【題目】如圖,直三棱柱中,且,是棱上的動點,是的中點.
(1)當是中點時,求證:平面;
(2)在棱上是否存在點,使得平面與平面所成銳二面角為,若存在,求的長,若不存在,請說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】[2018·石家莊一檢]已知函數(shù).
(1)若,求函數(shù)的圖像在點處的切線方程;
(2)若函數(shù)有兩個極值點,,且,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直線a與平面所成角的為30o,直線b在平面內,且與b異面,若直線a與直線b所成的角為,則( )
A. 0<≤30 B. 0<≤90 C. 30≤≤90 D. 30≤≤180
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),在以原點為極點, 軸正半軸為極軸的極坐標系中,直線的極坐標方程為.
(1)求曲線的普通方程和直線的傾斜角;
(2)設點,直線和曲線交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)的極值;
(2)若存在與函數(shù)的圖象都相切的直線,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2018甘肅蘭州市高三一診】已知圓: ,過且與圓相切的動圓圓心為.
(I)求點的軌跡的方程;
(II)設過點的直線交曲線于, 兩點,過點的直線交曲線于, 兩點,且,垂足為(, , , 為不同的四個點).
①設,證明: ;
②求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,底面,為直角梯形,與相交于點,,,,三棱錐的體積為9.
(1)求的值;
(2)過點的平面平行于平面,與棱,,,分別相交于點,求截面的周長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的右焦點為,原點為,橢圓的動弦過焦點且不垂直于坐標軸,弦的中點為,過且垂直于線段的直線交射線于點.
(1)證明:點在定直線上;
(2)當最大時,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com