2.已知點(diǎn)A(2,0),點(diǎn)B(0,3),點(diǎn)C在圓x2+y2=1上,當(dāng)△ABC的面積最小時(shí),點(diǎn)C的坐標(biāo)為($\frac{{3\sqrt{13}}}{13}$,$\frac{{2\sqrt{13}}}{13}$).

分析 設(shè)C(a,b).根據(jù)點(diǎn)A、B的坐標(biāo)利用待定系數(shù)法求得直線AB方程,然后根據(jù)點(diǎn)到直線的距離和不等式的性質(zhì)得到a、b的數(shù)量關(guān)系,將其代入圓的方程即可求得a、b的值,即點(diǎn)C的坐標(biāo).

解答 解:設(shè)C(a,b).則a2+b2=1,①
∵點(diǎn)A(2,0),點(diǎn)B(0,3),
∴直線AB的解析式為:3x+2y-6=0.
如圖,過(guò)點(diǎn)C作CF⊥AB于點(diǎn)F,欲使△ABC的面積最小,只需線段CF最短.
則CF=$\frac{|2a+3b-6|}{\sqrt{{2}^{2}+{3}^{2}}}$≥$\frac{\sqrt{13}×|\sqrt{2a•3b}-6|}{13}$,當(dāng)且僅當(dāng)2a=3b時(shí),取“=”,
∴a=$\frac{3b}{2}$,②
聯(lián)立①②求得:a=$\frac{{3\sqrt{13}}}{13}$,b=$\frac{{2\sqrt{13}}}{13}$,
故點(diǎn)C的坐標(biāo)為($\frac{{3\sqrt{13}}}{13}$,$\frac{{2\sqrt{13}}}{13}$).
故答案是:($\frac{{3\sqrt{13}}}{13}$,$\frac{{2\sqrt{13}}}{13}$).

點(diǎn)評(píng) 本題考查了圓的標(biāo)準(zhǔn)方程、點(diǎn)到直線的距離公式、三角形的面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.指出下列函數(shù)的振幅、周期、初相及當(dāng)x=3π時(shí)的相位:
(1)y=-3sin($\frac{1}{4}$x-$\frac{π}{4}$);
(2)y=$\frac{1}{2}$sin(2x-$\frac{5π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.$\frac{1}{1×3}$+$\frac{1}{2×4}$+$\frac{1}{3×5}$+…+$\frac{1}{8×10}$=(  )
A.$\frac{9}{10}$B.$\frac{9}{20}$C.$\frac{29}{45}$D.$\frac{29}{90}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.集合A={x|x+y=1},B={(x,y)|x-y=1},則A∩B=∅.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.A、B兩島相距100海里,B在A北偏東30°方向,甲船A以50海里/小時(shí)的速度向B航行,同時(shí),乙船從B以30誨里/小時(shí)的速度沿南偏東30°方向航行,則$1\frac{16}{49}$小時(shí)后兩船之間距離最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖1已知正方形ABCD的邊長(zhǎng)為2,E,F(xiàn)分別為邊AD、AB的中點(diǎn),將△ABE沿BE折起,使平面ABE⊥平面BCDE,如圖2,點(diǎn)G為AC的中點(diǎn)
(Ⅰ)求證:DG∥平面ABE;
(Ⅱ)求椎體G-ABE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知在△ABC中,∠B=90°,D,E分別為邊BC,AC的中點(diǎn),將△CDE沿DE翻折后,使之成為四棱錐C′-ABDE(如圖).

(Ⅰ)求證:DE⊥平面BC′D;
(Ⅱ)設(shè)平面C′DE∩平面ABC′=l,求證:AB∥l;
(Ⅲ)若C′D⊥BD,AB=2,BD=3,F(xiàn)為棱BC′上一點(diǎn),設(shè)$\frac{BF}{FC'}=λ$,當(dāng)λ為何值時(shí),三棱錐C′-ADF的體積是1?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)集合W由滿足下列兩個(gè)條件的數(shù)列{an}構(gòu)成:①$\frac{{a}_{n}+{a}_{n+2}}{2}<{a}_{n+1}$,②存在實(shí)數(shù)a、b使a≤an≤b對(duì)任意正整數(shù)n都成立;
(1)現(xiàn)在給出只有5項(xiàng)的有限數(shù)列{an},{bn},其中a1=2,a2=6,a3=8,a4=9,a5=12;bk=log2k(k=1,2,3,4,5),試判斷數(shù)列{an},{bn}是否為集合W的元素;
(2)數(shù)列{cn}的前n項(xiàng)和為Sn,c1=1,且對(duì)任意正整數(shù)n,點(diǎn)(cn+1,Sn)在直線2x+y-2=0上,證明:數(shù)列{Sn}∈W,并寫出實(shí)數(shù)a、b的取值范圍;
(3)設(shè)數(shù)列{dn}∈W,且對(duì)滿足條件②中的實(shí)數(shù)b的最小值b0,都有dn≠b0(n∈N+),求證:數(shù)列{dn}一定是單調(diào)遞增數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知△ABC外接圓的圓心為O,且$\overrightarrow{AO}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,則$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案