【題目】已知函數(shù)且a≠1,函數(shù).
(1)判斷并證明f(x)和g(x)的奇偶性;
(2)求g(x)的值域;
(3)若x∈R,都有|f(x)|≥|g(x)|成立,求a的取值范圍.
【答案】(1)答案見解析.(2).(3).
.
【解析】
(1)利用定義判斷函數(shù)的奇偶性得解;(2)利用雙勾函數(shù)的圖象和性質(zhì)求出值域;(3)考慮到函數(shù)f(x),g(x)都是奇函數(shù),故只需保證x≥0時(shí)都有|f(x)|≥|g(x)|即可,再對a分兩種情況a>1和0<a<1討論,利用導(dǎo)數(shù)求出實(shí)數(shù)a的取值范圍是.
(1)首先,f(x),g(x)的定義域都是R,是關(guān)于原點(diǎn)對稱的,
其次,f(﹣x)=a﹣x﹣a﹣(﹣x)=﹣(ax﹣a﹣x)=﹣f(x),,
∴函數(shù)f(x),g(x)均為奇函數(shù);
(2)當(dāng)x=0時(shí),g(0)=0;
當(dāng)x≠0時(shí),,
令,則由雙勾函數(shù)的性質(zhì)可知,t∈(﹣∞,﹣2]∪[2,+∞),
∴,即此時(shí),
綜上,函數(shù)g(x)的值域?yàn)?/span>;
(3)考慮到函數(shù)f(x),g(x)都是奇函數(shù),故只需保證x≥0時(shí)都有|f(x)|≥|g(x)|即可,
這是因?yàn)楫?dāng)x<0時(shí),|f(x)|=|f(﹣x)|,|g(x)|=|g(﹣x)|,
①先考慮a>1的情形,此時(shí)f(x)=ax﹣a﹣x≥1﹣1=0,g(x)≥0,
因此只需當(dāng)x≥0時(shí),f(x)﹣g(x)≥0恒成立即可,
令,則,
令,則,
當(dāng)時(shí),φ′(x)>0,即φ(x)單增,故此時(shí)φ(x)min=φ(0)=﹣1;
當(dāng)時(shí),,故x=0時(shí),φ(x)氣的最小值﹣1,
若,則h′(x)=(ax+a﹣x)lna+φ(x)≥2lna﹣1≥0,
∴h(x)單增,故h(x)≥h(0)=0,符合題設(shè);
若,則,
且0<x<1時(shí),,h′(x)單增,
故由零點(diǎn)存在性定理可知存在x0∈(0,1),使得h′(x0)=0,
且x∈(0,x0)時(shí)h′(x)<0,h(x)單減,當(dāng)x∈(x0,1)時(shí)h′(x)>0,h(x)單增,
則h(x0)<h(0)=0,不符合題意,
故;
②再考慮0<a<1的情形,此時(shí),
此時(shí)的與①中的a地位等價(jià),同①理可知,即,
綜合①②可知,實(shí)數(shù)a的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為進(jìn)行愛國主義教育,在全校組織了一次有關(guān)釣魚島歷史知識(shí)的競賽.現(xiàn)有甲、乙兩隊(duì)參加釣魚島知識(shí)競賽,每隊(duì)3人,規(guī)定每人回答一個(gè)問題,答對為本隊(duì)贏得1分,答錯(cuò)得0分.假設(shè)甲隊(duì)中每人答對的概率均為,乙隊(duì)中3人答對的概率分別為,且各人回答正確與否相互之間沒有影響,用ξ表示甲隊(duì)的總得分.
(Ⅰ)求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望;
(Ⅱ)用表示“甲、乙兩個(gè)隊(duì)總得分之和等于3”這一事件,用表示“甲隊(duì)總得分大于乙隊(duì)總得分” 這一事件,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如題所示的平面圖形中,為矩形,,為線段的中點(diǎn),點(diǎn)是以為圓心,為直徑的半圓上任一點(diǎn)(不與重合),以為折痕,將半圓所在平面折起,使平面平面,如圖2,為線段的中點(diǎn).
(1)證明:.
(2)若銳二面角的大小為,求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,四邊形為正方形,,,.
(1)證明:平面平面.
(2)若平面,二面角為,三棱錐的外接球的球心為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果,已知正方形的邊長為2,平行軸,頂點(diǎn),和分別在函數(shù),和的圖像上,則實(shí)數(shù)的值為________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐,平面,,,.
(1)求證:平面;
(2)求證:在線段上存在一點(diǎn),使得,并指明點(diǎn)的位置;
(3)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),給出下列結(jié)論:
(1)若對任意,且,都有,則為R上的減函數(shù);
(2)若為R上的偶函數(shù),且在內(nèi)是減函數(shù), (-2)=0,則>0解集為(-2,2);
(3)若為R上的奇函數(shù),則也是R上的奇函數(shù);
(4)t為常數(shù),若對任意的,都有則關(guān)于對稱。
其中所有正確的結(jié)論序號(hào)為_________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com