【題目】某校為進行愛國主義教育,在全校組織了一次有關(guān)釣魚島歷史知識的競賽.現(xiàn)有甲、乙兩隊參加釣魚島知識競賽,每隊3人,規(guī)定每人回答一個問題,答對為本隊贏得1分,答錯得0分.假設(shè)甲隊中每人答對的概率均為,乙隊中3人答對的概率分別為,且各人回答正確與否相互之間沒有影響,用ξ表示甲隊的總得分.

)求隨機變量ξ的分布列和數(shù)學(xué)期望;

)用表示甲、乙兩個隊總得分之和等于3”這一事件,用表示甲隊總得分大于乙隊總得分這一事件,求

【答案】1,(2,

【解析】

試題由于甲隊中每人答對的概率均為,三人中答對人數(shù)可能為0人或1人或2人或3人,所以可取值為0,12,3;顯然服從二項分布,根據(jù)二項分布的數(shù)學(xué)期望公式得:

第二步用表示甲隊得這一事件,用表示乙隊得,表示甲、乙兩個隊總得分之和等于3” ,表示甲隊總得分大于乙隊總得分,則事件含有,由于事件,為互斥事件,而事件獨立,事件獨立,所以

求出概率值

試題解析:()根據(jù)題設(shè)可知,甲隊中每人答對的概率均為,因此的分布列為,,因為,所以

)用表示甲隊得這一事件,用表示乙隊得,由于事件為互斥事件,

故有.由題設(shè)可知,事件獨立,事件獨立, 則

;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某手機商家為了更好地制定手機銷售策略,隨機對顧客進行了一次更換手機時間間隔的調(diào)查.從更換手機的時間間隔不少于3個月且不超過24個月的顧客中選取350名作為調(diào)查對象,其中男性顧客和女性顧客的比為,商家認為一年以內(nèi)(含一年)更換手機為頻繁更換手機,否則視為未頻繁更換手機.現(xiàn)按照性別采用分層抽樣的方法從中抽取105人,并按性別分為兩組,得到如下表所示的頻數(shù)分布表:

事件間隔(月)

男性

x

8

9

18

12

8

4

女性

y

2

5

13

11

7

2

1)計算表格中x,y的值;

2)若以頻率作為概率,從已抽取的105且更換手機時間間隔為36個月(含3個月和6個月)的顧客中,隨機抽取2人,求這2人均為男性的概率;

3)請根據(jù)頻率分布表填寫列聯(lián)表,并判斷是否有以上的把握認為頻繁更換手機與性別有關(guān)”.

頻繁更換手機

未頻繁更換手機

合計

男性顧客

女性顧客

合計

附表及公式:

P

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若處的切線與直線垂直,求的極值;

2)若函數(shù)的圖象恒在直線的下方.

①求實數(shù)的取值范圍;

②求證:對任意正整數(shù),都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若不等式為自然對數(shù)的底數(shù))對成立,則實數(shù)的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(k+)lnx+,k∈[4,+∞),曲線y=f(x)上總存在兩點M(x1,y1),N(x2,y2),使曲線y=f(x)在M,N兩點處的切線互相平行,則x1+x2的取值范圍為

A. ,+∞) B. ,+∞) C. [,+∞) D. [,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某幾何體的三視圖如圖所示,網(wǎng)格紙上的小正方形邊長為1,則此幾何體的外接球的表面積為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】唐代詩人李欣的是古從軍行開頭兩句說百日登山望烽火,黃昏飲馬傍交河詩中隱含著一個有缺的數(shù)學(xué)故事將軍飲馬的問題,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬后再回到軍營,怎樣走才能使總路程最短?在平面直角坐標(biāo)系中,設(shè)軍營所在區(qū)域為,若將軍從出發(fā),河岸線所在直線方程,并假定將軍只要到達軍營所在區(qū)域即回到軍營,則將軍飲馬的最短總路程為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間生產(chǎn)甲、乙兩種產(chǎn)品,已知制造一件甲產(chǎn)品需要種元件5個,種元件2個,制造一件乙種產(chǎn)品需要種元件3個,種元件3個,現(xiàn)在只有種元件180個,種元件135個,每件甲產(chǎn)品可獲利潤20元,每件乙產(chǎn)品可獲利潤15元,試問在這種條件下,應(yīng)如何安排生產(chǎn)計劃才能得到最大利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)a1,函數(shù).

1)判斷并證明f(x)g(x)的奇偶性;

2)求g(x)的值域;

3)若xR,都有|f(x)|≥|g(x)|成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案