(本題滿分12分)
已知函數(shù);
(1)當(dāng)時(shí),判斷在定義域上的單調(diào)性;
(2)求在上的最小值.
(1)在上是單調(diào)遞增函數(shù).
(2) 當(dāng)時(shí) , ;
當(dāng)時(shí), ;
當(dāng)時(shí) , -
解析試題分析:解:(Ⅰ)由題意:的定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/d6/7/vjmkm1.png" style="vertical-align:middle;" />,且.
,故在上是單調(diào)遞增函數(shù). ---------------4分
(Ⅱ)由(1)可知:
① 若,則,即在上恒成立,此時(shí)在上為增函數(shù), ------------------6分
② 若,則,即在上恒成立,此時(shí)在上為減函數(shù),------------------8分
③ 若,令得,
當(dāng)時(shí),在上為減函數(shù),
當(dāng)時(shí),在上為增函數(shù),
------------------11分
綜上可知:當(dāng)時(shí) , ;
當(dāng)時(shí), ;
當(dāng)時(shí) , -----------------12分
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):根據(jù)導(dǎo)數(shù)的符號(hào)判定函數(shù)的單調(diào)性是解題的關(guān)鍵,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
理科(本小題14分)已知函數(shù),當(dāng)時(shí),函數(shù)取得極大值.
(Ⅰ)求實(shí)數(shù)的值;(Ⅱ)已知結(jié)論:若函數(shù)在區(qū)間內(nèi)導(dǎo)數(shù)都存在,且,則存在,使得.試用這個(gè)結(jié)論證明:若,函數(shù),則對(duì)任意,都有;(Ⅲ)已知正數(shù)滿足求證:當(dāng),時(shí),對(duì)任意大于,且互不相等的實(shí)數(shù),都有
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的最小值為0,其中。
(1)求a的值
(2)若對(duì)任意的,有成立,求實(shí)數(shù)k的最小值
(3)證明
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)f(x)=a ln x++x+1,其中a∈R,曲線y=f(x)在點(diǎn)(1,f(1))處的切線垂直于y軸.(1)求a的值;(2)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)
已知函數(shù)
(1) 當(dāng)時(shí),求函數(shù)的最值;
(2) 求函數(shù)的單調(diào)區(qū)間;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(I)求曲線在處的切線方程。
(II)設(shè)如果過(guò)點(diǎn)可作曲線的三條切線,證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(滿分12分)設(shè)函數(shù)。
(Ⅰ)若在定義域內(nèi)存在,而使得不等式能成立,求實(shí)數(shù)的最小值;
(Ⅱ)若函數(shù)在區(qū)間上恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com