【題目】已知圓,圓,且圓與圓存在公共點,則圓與直線的位置關(guān)系是(  )

A. 相切B. 相離C. 相交D. 相切或相交

【答案】C

【解析】

根據(jù)題意,由圓的方程分析兩圓的圓心與半徑,由B的圓心分析可得圓心B在直線ax-y+4a-2=0上;據(jù)此可得若兩圓有公共點,則必有圓心A到直線ax-y+4a-2=0的距離d=≤2,解可得a的取值范圍,求出圓心A到直線l的距離,結(jié)合a的范圍分析可得圓心A到直線lx+y=a的距離d′1,由直線與圓的位置關(guān)系分析可得答案.

根據(jù)題意,圓Ax2+y2=1,圓心A0,0),半徑為1,

B:(x-t+42+y-at+22=1,圓心Bt-4at-2),半徑為1,

其圓心B在直線ax-y+4a-2=0上,

若兩圓有公共點,則必有圓心A到直線ax-y+4a-2=0的距離d=,

變形可得:0≤a≤

A的圓心A到直線lx+y=a的距離d′=,

又由0≤a≤,則有d′=1,

則圓A與直線lx+y=a相交;

故選:C

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

1)當時,求曲線在點處的切線方程;

2時,求在區(qū)間上的最大值和最小值;

3)當時,若方程在區(qū)間上有唯一解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當時,(i)求曲線在點處的切線方程;

(ii)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)工會利用 “健步行”開展健步走積分獎勵活動會員每天走5千步可獲積分30分(不足5千步不積分),每多走2千步再積20分(不足2千步不積分)記年齡不超過40歲的會員為類會員,年齡大于40歲的會員為類會員為了解會員的健步走情況,工會從兩類會員中各隨機抽取名會員,統(tǒng)計了某天他們健步走的步數(shù),并將樣本數(shù)據(jù)分為, , , , , , 九組,將抽取的類會員的樣本數(shù)據(jù)繪制成頻率分布直方圖, 類會員的樣本數(shù)據(jù)繪制成頻率分布表圖、表如下所示).

的值;

從該地區(qū)類會員中隨機抽取名,設(shè)這名會員中健步走的步數(shù)在千步以上(含千步)的人數(shù)為,求的分布列和數(shù)學期望;

設(shè)該地區(qū)類會員和類會員的平均積分分別為,試比較的大。ㄖ恍鑼懗鼋Y(jié)論).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從高一年級隨機選取100名學生,對他們期中考試的數(shù)學和語文成績進行分析,成績?nèi)鐖D所示.

(Ⅰ)從這100名學生中隨機選取一人,求該生數(shù)學和語文成績均低于60分的概率;

(II)從語文成績大于80分的學生中隨機選取兩人,記這兩人中數(shù)學成績高于80分的人數(shù)為,求的分布列和數(shù)學期望(;

(Ill)試判斷這100名學生數(shù)學成績的方差與語文成績的方差的大小.(只需寫出結(jié)論).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

)當時,求曲線處的切線方程;

)若函數(shù)在定義域內(nèi)不單調(diào),求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年空氣質(zhì)量逐步霧霾天氣現(xiàn)象增多,大氣污染危害加重,大氣污染可引起心悸,呼吸困難等心肺疾病,為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機的對入院50人進行了問卷調(diào)查得到了如下的列聯(lián)表:

患心肺疾病

不患心肺疾病

合計

5

10

合計

50

已知按性別采用分層抽樣法抽取容量為10的樣本,則抽到男士的人數(shù)為5

(Ⅰ)請將上面的列聯(lián)表補充完整;

(Ⅱ)能否在犯錯概率不超過的前提下認為患心肺疾病與性別有關(guān)?說明你的理由.

下面的臨界值表供參考:

參考公式:

,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】節(jié)約資源和保護環(huán)境是中國的基本國策.某化工企業(yè),積極響應(yīng)國家要求,探索改良工藝,使排放的廢氣中含有的污染物數(shù)量逐漸減少.已知改良工藝前所排放的廢氣中含有的污染物數(shù)量為,首次改良后所排放的廢氣中含有的污染物數(shù)量為.設(shè)改良工藝前所排放的廢氣中含有的污染物數(shù)量為,首次改良工藝后所排放的廢氣中含有的污染物數(shù)量為,則第n次改良后所排放的廢氣中的污染物數(shù)量,可由函數(shù)模型給出,其中n是指改良工藝的次數(shù).

1)試求改良后所排放的廢氣中含有的污染物數(shù)量的函數(shù)模型;

2)依據(jù)國家環(huán)保要求,企業(yè)所排放的廢氣中含有的污染物數(shù)量不能超過,試問至少進行多少次改良工藝后才能使得該企業(yè)所排放的廢氣中含有的污染物數(shù)量達標.

(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】襄陽市擬在2021年奧體中心落成后申辦2026年湖北省省運會,據(jù)了解,目前武漢,宜昌,黃石等申辦城市因市民擔心賽事費用超支而準備相繼退出,某機構(gòu)為調(diào)查襄陽市市民對申辦省運會的態(tài)度,選取某小區(qū)的100位居民調(diào)查結(jié)果統(tǒng)計如下:

支持

不支持

合計

年齡不大于50

60

年齡大于50

10

合計

80

100

1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

2)能否在犯錯誤的概率不超過的前提下認為不同年齡與支持申辦省運會無關(guān)?

附: , .

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

同步練習冊答案