橢圓的左、右焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),過F1作與x軸不重合的直線l交橢圓于A,B兩點(diǎn).

(I)若ΔABF2為正三角形,求橢圓的離心率;

(II)若橢圓的離心率滿足,為坐標(biāo)原點(diǎn),求證:.

 

【答案】

(Ⅰ);(Ⅱ)見解析.

【解析】

試題分析:(Ⅰ)由橢圓定義易得為邊上的中線,在中,可得,即得橢圓的離心率;(Ⅱ)設(shè),,由,,先得,再分兩種情況討論,①是當(dāng)直線軸垂直時(shí);②是當(dāng)直線不與軸垂直時(shí),都證明,可得結(jié)論.

試題解析:(Ⅰ)由橢圓的定義知,又,∴,即為邊上的中線,∴,        2分

中,,∴橢圓的離心率.       4分

(注:若學(xué)生只寫橢圓的離心率,沒有過程扣3分)

(Ⅱ)設(shè)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013092123562524621676/SYS201309212358257425393004_DA.files/image008.png">,,所以    6分

①當(dāng)直線軸垂直時(shí),,,,

=, 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013092123562524621676/SYS201309212358257425393004_DA.files/image025.png">,所以,恒為鈍角,

.         8分

②當(dāng)直線不與軸垂直時(shí),設(shè)直線的方程為:,代入,

整理得:,

,

      10分

, 由 ①可知 ,

恒為鈍角.,所以恒有.      12分

考點(diǎn):1、橢圓的定義及性質(zhì);2、直線與橢圓相交的綜合應(yīng)用;3、向量的數(shù)量積的坐標(biāo)運(yùn)算.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
3
,以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)為半徑的圓與y=x+2相切.
(1)求a與b;
(2)設(shè)該橢圓的左、右焦點(diǎn)分別為F1和F2,直線l過F2且與x軸垂直,動(dòng)直線l2與y軸垂直,l2交l1與點(diǎn)P.求PF1線段垂直平分線與l2的交點(diǎn)M的軌跡方程,并說明曲線類型.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下5個(gè)命題:
①曲線x2-(y-1)2=1按
a
=(1,-2)
平移可得曲線(x+1)2-(y-3)2=1;
②設(shè)A、B為兩個(gè)定點(diǎn),n為常數(shù),|
PA
|-|
PB
|=n
,則動(dòng)點(diǎn)P的軌跡為雙曲線;
③若橢圓的左、右焦點(diǎn)分別為F1、F2,P是該橢圓上的任意一點(diǎn),延長(zhǎng)F1P到點(diǎn)M,使|F2P|=|PM|,則點(diǎn)M的軌跡是圓;
④A、B是平面內(nèi)兩定點(diǎn),平面內(nèi)一動(dòng)點(diǎn)P滿足向量
AB
AP
夾角為銳角θ,且滿足 |
PB
| |
AB
| +
PA
AB
=0
,則點(diǎn)P的軌跡是圓(除去與直線AB的交點(diǎn));
⑤已知正四面體A-BCD,動(dòng)點(diǎn)P在△ABC內(nèi),且點(diǎn)P到平面BCD的距離與點(diǎn)P到點(diǎn)A的距離相等,則動(dòng)點(diǎn)P的軌跡為橢圓的一部分.
其中所有真命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的左、右焦點(diǎn)分別為F1,F(xiàn)2,橢圓的離心率為
1
2
且經(jīng)過點(diǎn)P(1,
3
2
)
.M為橢圓上的動(dòng)點(diǎn),以M為圓心,MF2為半徑作圓M.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若圓M與y軸有兩個(gè)交點(diǎn),求點(diǎn)M橫坐標(biāo)的取值范圍;
(3)是否存在定圓N,使得圓N與圓M相切?若存在.求出圓N的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•重慶一模)給出以下4個(gè)命題:
①曲線x2-(y-1)2=1按
a
=(1,-2)平移可得曲線(x+1)2-(y-3)2=1;
②若|x-1|+|y-1|≤1,則使x-y取得最小值的最優(yōu)解有無數(shù)多個(gè);
③設(shè)A、B為兩個(gè)定點(diǎn),n為常數(shù),|
PA
|-|
PB
|=n,則動(dòng)點(diǎn)P的軌跡為雙曲線;
④若橢圓的左、右焦點(diǎn)分別為F1、F2,P是該橢圓上的任意一點(diǎn),延長(zhǎng)F1P到點(diǎn)M,使|F2P|=|PM|,則點(diǎn)M的軌跡是圓.
其中所有真命題的序號(hào)為
②④
②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆黑龍江省高二上學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題12分)已知橢圓的左、右焦點(diǎn)分別為F1、F2,其中F2也是拋物線的焦點(diǎn),M是C1與C2在第一象限的交點(diǎn),且  

(I)求橢圓C1的方程;  (II)已知菱形ABCD的頂點(diǎn)A、C在橢圓C1上,頂點(diǎn)B、D在直線上,求直線AC的方程。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案