7.已知cosα=$\frac{3}{5}$,cos(α+β)=-$\frac{12}{13}$,α∈(0,$\frac{π}{2}$),α+β∈($\frac{π}{2}$,π),則cosβ=-$\frac{16}{65}$.

分析 利用同角三角函數(shù)基本關(guān)系式先求sinα,sin(α+β)的值,根據(jù)兩角和與差的余弦函數(shù)公式可求cosβ,從而確定其值.

解答 解:∵cosα=$\frac{3}{5}$,α∈(0,$\frac{π}{2}$),
∴sinα=$\frac{4}{5}$,
∵α+β∈($\frac{π}{2}$,π),cos(α+β)=-$\frac{12}{13}$,
∴sin(α+β)═$\sqrt{1-co{s}^{2}(α+β)}$=$\frac{5}{13}$,
∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=(-$\frac{12}{13}$)×$\frac{3}{5}$+$\frac{5}{13}$×$\frac{4}{5}$=-$\frac{16}{65}$.
故答案為:-$\frac{16}{65}$.

點(diǎn)評 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角和與差的余弦函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知:$A_n^4=40C_n^5$,設(shè)$f(x)={(x-\frac{1}{{\root{3}{x}}})^n}$.
(1)求n的值;
(2)寫出f(x)的展開式中所有的有理項;
(3)求f(x)的展開式中系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若命題p:?x∈R,x2>1,則該命題的否定是?x∈R,x2≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.函數(shù)y=Asin(ωx+φ)+c(A>0,ω>0,|φ|<$\frac{π}{2}$)在同一周期中最高點(diǎn)坐標(biāo)為(2,2),最低點(diǎn)的坐標(biāo)為(8,-4).
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若平面向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$-2$\overrightarrow$=(2$\sqrt{3}$,-1),$\overrightarrow b-2\overrightarrow a=({-\sqrt{3},-1})$,則$\overrightarrow a$與$\overrightarrow b$的夾角是( 。
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若h(x)=$\left\{\begin{array}{l}{{x}^{2},x>8}\\{h(x+2),x≤8}\end{array}\right.$,則h(3)=81.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知△ABC的面積為S,三內(nèi)角A,B,C的對邊分別為a,b,c.若4S+a2=b2+c2,則sinC-cos(B+$\frac{π}{4}$)取最大值時C=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)Sn為等差數(shù)列{an}的前n項和,已知a1+a3+a11=6,則S9=18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=|x-2|-|x+1|
(1)解不等式f(x)<1;
(2)若$?x∈R,f(x)≥{log_{\frac{1}{3}}}(m-3)$,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案