12.若h(x)=$\left\{\begin{array}{l}{{x}^{2},x>8}\\{h(x+2),x≤8}\end{array}\right.$,則h(3)=81.

分析 直接利用分段函數(shù),逐步求解即可.

解答 解:若h(x)=$\left\{\begin{array}{l}{{x}^{2},x>8}\\{h(x+2),x≤8}\end{array}\right.$,則h(3)=h(3+2)=h(5)=h(5+2)=h(7+2)=h(9)=92=81.
故答案為:81.

點評 本題考查分段函數(shù)的應用,函數(shù)值的求法,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知雙曲線C:2x2-y2=2,過點Q(1,1)能否作一條直線l,與雙曲線交于A、B兩點,且點Q為線段 AB的中點?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)f(x)的定義域為[-1,5],部分對應值如表,f(x)的導函數(shù)y=f′(x)的圖象如圖所示,下列關于函數(shù)f(x)的命題:
x-1045
f(x)1221
①函數(shù)f(x)的值域為[1,2];
②函數(shù)f(x)在[0,2]上是減函數(shù);
③如果當x∈[-1,t]時,f(x)的最大值是2,那么t的最大值為4;
④當1<a<2時,函數(shù)y=f(x)-a有4個零點.其中真命題的個數(shù)是( 。
A.4個B.3個C.2個D.1個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.下列命題中:
①某人進行射擊訓練,共有4發(fā)子彈,擊中目標或者子彈打完停止射擊,記射擊次數(shù)為隨機變量X,則“X=4”表示第4次射擊擊中目標:
②變量y與x之間的相關系數(shù)r=-0.9532.查表得到的相關系數(shù)臨界值r0.05=0.8013,則變量y與x之間具有線性相關關系;
③若(2i$\sqrt{x}$-$\frac{1}{x}$)n的二項展開式中奇數(shù)項的二項式系數(shù)的和等于64,i是虛數(shù)單位,則n=6.
④函數(shù)f(x)=1n(x+1)+a(x2-x)沒有極值點的充要條件是0≤a≤$\frac{8}{9}$.
其中正確命題的個數(shù)是(  )個.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知cosα=$\frac{3}{5}$,cos(α+β)=-$\frac{12}{13}$,α∈(0,$\frac{π}{2}$),α+β∈($\frac{π}{2}$,π),則cosβ=-$\frac{16}{65}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設等差數(shù)列{an}的前n項和為Sn,若a1008>0,a1007+a1008<0,則滿足SnSn+1<0的正整數(shù)n為(  )
A.2013B.2014C.2015D.2016

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設實數(shù)a,b,則“|a-b2|+|b-a2|≤1”是“(a-$\frac{1}{2}}$)2+(b-$\frac{1}{2}}$)2≤$\frac{3}{2}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.從某廠生產(chǎn)的802輛轎車中抽取80輛測試某種性能,若先用簡單隨機抽樣從802轎車中剔除2輛,剩下的800輛再按系統(tǒng)抽樣方法進行,則每輛轎車被抽到的概率是( 。
A.不全相等B.均不相等
C.都相等,且為$\frac{1}{10}$D.都相等,且為$\frac{40}{401}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.求圓${(x-\frac{1}{2})^2}+{(y+1)^2}=\frac{5}{4}$關于直線x-y+1=0對稱的圓的方程.

查看答案和解析>>

同步練習冊答案