2.設(shè)函數(shù)f(x)=x(x+k)(x+2k),且f′(0)=8,則k=(  )
A.2B.-2C.±2D.±1

分析 求導(dǎo)f′(x)=(x+k)(x+2k)+x[(x+k)(x+2k)]′,f′(0)=2k2=8,即可求出k的值.

解答 解:f(x)=x(x+k)(x+2k),f′(x)=(x+k)(x+2k)+x[(x+k)(x+2k)]′,
∴f′(0)=2k2=8,解得:k=±2,
故答案為:C.

點評 本題考查導(dǎo)數(shù)的運算,考查導(dǎo)數(shù)的求導(dǎo)法則,考查計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知f(x)=$\frac{1}{3}$x3+bx2+cx(b,c∈R),f′(1)=0,x∈[-1,3]時,曲線y=f(x)的切線斜率的最小值為-1,求b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知復(fù)數(shù)${z_1}=\frac{15-5i}{{{{(2+i)}^2}}},{z_2}=a-3i(a∈R)$.
(1)若a=2,求${z_1}•\overline{z_2}$;
(2)若$z=\frac{z_1}{z_2}$是純虛數(shù),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求函數(shù)y=x-ex+1的單調(diào)區(qū)間、極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.證明:$\frac{cosαcscα-sinαsecα}{cosα+sinα}$=cscα-secα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.經(jīng)過點P(0,-1)作直線l,若直線l與連接A(-1,0),B(2,1)的線段總有公共點,則直線l的斜率k的取值范圍為(-∞,-1]∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,A=2C,c=2,a2=4b-4,則a=3$±\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)f(x)是R上的奇函數(shù),且當(dāng)x∈[0,+∞)時,f(x)=x2(1-$\sqrt{x}$),則當(dāng)x∈(-∞,0)時f(x)=-x2(1-$\sqrt{-x}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,正方體ABCD-A1B1C1D1中,P,M,N分別為棱DD1,AB,BC的中點.
(1)求二面角B1-MN-B的正切值;
(2)求證:PB⊥平面MNB1

查看答案和解析>>

同步練習(xí)冊答案