分析 由f(x)是R上的奇函數(shù),可得f(x)=-f(-x),根據(jù)已知中當(dāng)x∈[0,+∞)時(shí),f(x)=x2(1-$\sqrt{x}$),結(jié)合當(dāng)x∈(-∞,0)時(shí),-x∈[0,+∞),代入可得答案.
解答 解:當(dāng)x∈(-∞,0)時(shí),-x∈(0,+∞)
∴f(-x)=$(-x)^{2}(1-\sqrt{-x})$,
又∵f(x)是R上的奇函數(shù),
∴f(x)=-f(-x)=-x2(1-$\sqrt{-x}$),
故答案為:-x2(1-$\sqrt{-x}$).
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)奇偶性的性質(zhì),其中由x∈(-∞,0)得到-x∈[0,+∞),將未知區(qū)間轉(zhuǎn)化為已知區(qū)間是解答的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | g(x)=2sin2x | B. | $g(x)=2sin(2x+\frac{2π}{3})$ | C. | g(x)=2cos2x | D. | $g(x)=2sin(2x+\frac{π}{6})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | -2 | C. | ±2 | D. | ±1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | T=1,θ=$\frac{π}{2}$ | B. | T=1,θ=π | C. | T=2,θ=π | D. | T=2,θ=$\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①②③ | B. | ②③④ | C. | ①②④ | D. | ①③④ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com