6.在極坐標(biāo)系中,過點(diǎn)P($\sqrt{2}$,$\frac{π}{4}$)作曲線ρ=2cosθ的切線l,求直線l的極坐標(biāo)方程.

分析 把極坐標(biāo)化為直角坐標(biāo),判斷出點(diǎn)P與圓的位置關(guān)系,即可得出切線方程.

解答 解:點(diǎn)P($\sqrt{2}$,$\frac{π}{4}$)化為直角坐標(biāo):P(1,1).
曲線ρ=2cosθ,即ρ2=2ρcosθ,化為直角坐標(biāo)方程:x2+y2=2x,
配方為(x-1)2+y2=1,可得圓心(1,0),半徑r=1.
由于點(diǎn)P滿足圓的方程,可得切線方程為:y=1.
化為極坐標(biāo)方程:ρsinθ=1.

點(diǎn)評 本題考查了極坐標(biāo)與直角坐標(biāo)方程的互化、圓的切線方程,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若不等式$\frac{1}{a-b}$+$\frac{1}{b-c}$+$\frac{λ}{c-a}$<0,當(dāng)a>b>c時成立,則λ的取值范圍是(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)已知a>0,函數(shù)f(x)=x+$\frac{a}{x}$(x>0),證明:函數(shù)f(x)在(0,$\sqrt{a}$]上是減函數(shù),在[$\sqrt{a}$,+∞)上是增函數(shù);
(2)求函數(shù)y=log${\;}_{\frac{1}{3}}$(x2-4x+3)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x3-3ax2+2bx在x=1處的極小值為-1.
( I)試求a,b的值,并求出f(x)的單調(diào)區(qū)間;
(Ⅱ)若關(guān)于x的方程f(x)=a有三個不同的實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x-alnx+$\frac{1+a}{x}$.
(Ⅰ)若a=1,求f(x)在x∈[1,3]的最值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若存在x0∈[1,e],使得f(x0)<0成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ex-ax,a為常數(shù),其中e是自然對數(shù)的底數(shù).
(1)若f(x)在[0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)若f(x)的圖象與y軸交于點(diǎn)A,曲線y=f(x)在點(diǎn)A處的切線斜率為-1,求a的值及函數(shù)f(x)的極值;
(3)證明:當(dāng)x>0時,x2<ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x3+mx2+nx-2的圖象過點(diǎn)(-1,-6),且函數(shù)g(x)=f′(x)+6x的圖象關(guān)于y軸對稱.
(1)求m、n的值及函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若函數(shù)h(x)=f(x)-ax在(-1,1)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若f(x)=$\frac{1}{2}$x2+bln(x+2)在(-1,+∞)上是單調(diào)增函數(shù),則b的取值范圍是(  )
A.[1,+∞)B.(1,+∞)C.(-∞,-1]D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=(-ax2-2x+a)•ex(a∈R).
(1)當(dāng)a=-2時,求函數(shù)f(x)的極值;
(2)若f(x)在[-1,1]上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案