4.已知函數(shù)f(x)=(-ax2-2x+a)•ex(a∈R).
(1)當a=-2時,求函數(shù)f(x)的極值;
(2)若f(x)在[-1,1]上單調(diào)遞減,求實數(shù)a的取值范圍.

分析 (1)把a=-2代入f(x),解不等式f′(x)>0,f′(x)<0即可;
(2)f(x)在[-1,1]上單調(diào)遞減,即f′(x)≤0在[-1,1]上恒成立,對a進行分類討論即可解出a的取值范圍.

解答 解:(1)a=-2時,f(x)=(2x2-2x-2)•ex,定義域為R.
f′(x)=(2x2-2x-2)•ex+(4x-2)•ex=2(x-1)(x+2)•ex
由f′(x)>0得x<-2或x>1,由f′(x)<0,得-2<x<1,
∴f(x)的單調(diào)遞增區(qū)間為(-∞,-2),(1,+∞),單調(diào)遞減區(qū)間為(-2,1).
(2)f′(x)=(-ax2-2x+a)•ex+(-2ax-2)•ex=-[ax2+2(a+1)x+2-a]•ex
令g(x)=-ax2-2(a+1)x+a-2.
①當a=0時,g(x)=-2x-2,在(-1,1)內(nèi)g(x)<0,f′(x)<0,
函數(shù)f(x)在[-1,1]上單調(diào)遞減.
②當a>0時,g(x)=-ax2-2(a+1)x+a-2是二次函數(shù),其對稱軸為x=-1-$\frac{1}{a}$<-1,
當且僅當g(-1)≤0,即a≤0時,f′(x)≤0,此時無解.
③當a<0時,g(x)=-ax2-2(a+1)x+a-2是二次函數(shù),
當且僅當$\left\{\begin{array}{l}{g(-1)=a≤0}\\{g(1)=-2a-4≤0}\end{array}\right.$.∴-2≤a<0時,f′(x)≤0,
此時函數(shù)f(x)在[-1,1]上單調(diào)遞減.
綜上,實數(shù)a的取值范圍是[-2,0].

點評 本題考查導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,對可導(dǎo)函數(shù)f(x)來說,f′(x)≤0(不總為0)是f(x)在某區(qū)間上單調(diào)遞減的充要條件.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

6.在極坐標系中,過點P($\sqrt{2}$,$\frac{π}{4}$)作曲線ρ=2cosθ的切線l,求直線l的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知圓C:x2+y2-2x-3=0,直線l:ax+y+1=0,那么它們的位置關(guān)系(  )
A.圓與直線相切B.圓與直線相交
C.圓與直線相離D.以上三種均有可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知圓x2+y2=4與圓x2+(y-8)2=4.
(1)若兩圓在直線y=$\frac{\sqrt{5}}{2}$x+b的兩側(cè),求實數(shù)b的取值范圍;
(2)求經(jīng)過點A(0,5)且和兩圓都沒有公共點的直線的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知向量$\overrightarrow{a}$=($\sqrt{3}$sin2x,cos2x),$\overrightarrow$=(cos2x,-cos2x),
(1)若x∈($\frac{7π}{24}$,$\frac{5π}{12}$)時,$\overrightarrow{a}$•$\overrightarrow$+$\frac{1}{2}$=-$\frac{3}{5}$,求cos4x的值;
(2)cos2x≥$\frac{1}{2}$,x∈(0,π),若關(guān)于x的方程$\overrightarrow{a}$•$\overrightarrow$+$\frac{1}{2}$=m有且只有一個根,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.若函數(shù)f(x)=sinax-cosax(a>0)的圖象與直線y=m(m為常數(shù))相切,并且切點的橫坐標依次成等差數(shù)列,且公差為π.
(1)求函數(shù)y=f(x)的解析式;
(2)已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,若$f(\frac{B}{2})=\sqrt{2}$,且a、b、c成等比數(shù)列,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知曲線C1的極坐標方程為ρ=2cosθ,曲線C2的參數(shù)方程為$\left\{{\begin{array}{l}{x=-\frac{4}{5}t}\\{y=-2+\frac{3}{5}t}\end{array}}\right.(t$為參數(shù)).
(1)判斷C1與C2的位置關(guān)系;
(2)設(shè)M為C1上的動點,N為C2上的動點,求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知命題:“若a,b為異面直線,平面α過直線a且與直線b平行,則直線b與平面α的距離等于異面直線a,b之間的距離”為真命題.根據(jù)上述命題,若a,b為異面直線,且它們之間的距離為d,則空間中與a,b均異面且距離也均為d的直線c的條數(shù)為( 。
A.0條B.1條
C.多于1條,但為有限條D.無數(shù)多條

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=-lnx+t(x-1),t為實數(shù).
(1)當t=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若當t=$\frac{1}{2}$時,$\frac{k}{x}$-$\frac{1}{2}$-f(x)<0在(1,+∞)上恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習冊答案