精英家教網 > 高中數學 > 題目詳情
6.某幾何體的正視圖和側視圖如圖(1),它的俯視圖的直觀圖是矩形O1A1B1C1(如圖(2)),其中O1A1=3,O1C1=1,則該幾何體的側面積及體積為( 。
A.24,$24\sqrt{2}$B.32,$8\sqrt{2}$C.48,$24\sqrt{2}$D.64,$64\sqrt{2}$

分析 首先由俯視圖的直觀圖得到俯視圖是邊長3的菱形,由此還原幾何體為四棱柱,根據實際就是體積和表面積.

解答 解:由俯視圖的直觀圖O1A1=3,O1C1=1,所以與O1A1垂直的高為$\sqrt{{1}^{2}+{1}^{2}}=\sqrt{2}$,由此俯視圖中高為2$\sqrt{2}$,所以與O1C1對應的邊長為$\sqrt{(2\sqrt{2})^{2}+1}$=3,得到俯視圖為邊長3的菱形,結合主視圖和側視圖得到幾何體是以菱形為底面,高為4的四棱柱,
所以幾何體的側面積為3×4×4=48;體積為2$\sqrt{2}$×3×4=24$\sqrt{2}$;
故選C.

點評 本題考查了幾何體的三視圖以及俯視圖的直觀圖;掌握直觀圖的規(guī)則,還原俯視圖,得到底面形狀是關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

20.設復數z滿足|z|=$\sqrt{13}$,且(2+3i)z(i是虛數單位)在復平面上對應的點在虛軸上,求z.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.已知圓O以AB為直徑,半徑為1.若圓O上有長度為1的動弦CD,則$\overrightarrow{AC}•\overrightarrow{BD}$的取值范圍是[-$\frac{3}{2}$,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.在三棱錐P-ABC中,PA⊥平面ABC,平面PAC⊥平面PBC,則直角△ABC中的三個角A,B,C中,角為直角C(從A,B,C中選擇一個填空)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.一個如圖放置的三棱柱的底面是正三角形,側棱與底面垂直,它的左視圖是邊長為$\sqrt{3}$的正方形,則它的外接球的表面積為( 。
A.B.$\frac{25π}{3}$C.D.$\frac{28π}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.某單位有職工480人,其中青年職工210人,中年職工150人,老年職工120人,為了了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本,若樣本中的青年職工為7人,則樣本容量為(  )
A.4B.5C.7D.16

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.小明同學的書架上層放有8本不同的數學書,下層放有10本不同的英語書,小明要從中拿出一本書,則共有不同的拿法的種數為( 。
A.8B.10C.18D.80

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.已知函數f(x)=ax2-4ax+2+3b(a>0),若f(x)在區(qū)間[3,4]上有最大值5,最小值-4,
(1)求a,b的值
(2)若g(x)=f(x)+(m+1)x在[3,5]上是單調函數,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.函數f(x)=log2x•log22x取得最小值時x的值為( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\sqrt{2}$

查看答案和解析>>

同步練習冊答案