精英家教網 > 高中數學 > 題目詳情

(1)求證:數學公式
(2)a,b分別取何值時,上面不等式取等號.

(1)證明:a2+b2+3
=


(2)解:當且僅當時,以上不等式取等號,
時不等式取等號.
分析:(1)先把a2+b2+3等價轉化為,再由均值不等式進行證明.
(2)由均值汪等式成立的條件知當且僅當時,以上不等式取等號.
點評:本題考查不等式的證明,解題時要注意進行等價轉化和合理地運用均值不等式進行證明.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知數列{an}中,a1=4,an+1=4-
4
an
(n∈N*
(1)求證:數列{
1
an-2
}
是等差數列;
(2)求數列的{an}通項公式an;
(3)記bn=nan(
1
2
)n+1
,求數列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知各項均為正數的兩個數列{an}和{bn}滿足:an+1=
anbn
an2+bn2
,n∈N*
(1)求證:當n≥2時,有an
2
2
成立;
(2)設bn+1=
bn
an
,n∈N*,求證:數列{(
bn
an
)
2
}
是等差數列;
(3)設bn+1=anbn,n∈N*,試問{an}可能為等比數列嗎?若可能,請求出公比的值,若不可能,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

棱長為2的正方體ABCD-A1B1C1D1中,E為棱C1D1的中點,F為棱BC的中點
(1)求證AE⊥DA1
(2)求在線段AA1上找一點G,使AE⊥面DFG.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
1
3
x3+
1
2
(b-1)x2+cx+d
(a,b,c,d∈R).
(1)若函數f(x)在x=1,x=2處取得極值,求b,c的值;
(2)若函數f(x)在區(qū)間(-∞,x1),(x2,+∞)上為增函數,在(x1,x2)上為減函數,且x2-x1>1,求證:b2>2(b+2c);
(3)在(2)的條件下,當t<x1時,試比較t2+bt+c與x1的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

[選做題]
A.(選修4-1:幾何證明選講)
如圖,△ABC是⊙O的內接三角形,PA是⊙O的切線,PB交AC于點E,交⊙O于點D,若PE=PA,
∠ABC=60°,PD=1,BD=8,求BC的長.
B.(選修4-2:矩陣與變換)
二階矩陣M對應的變換將點(1,-1)與(-2,1)分別變換成點(-1,-1)與(0,-2).
(Ⅰ)求矩陣M的逆矩陣M-1;
(Ⅱ)設直線l在變換M作用下得到了直線m:2x-y=4,求l的方程.
C.(選修4-4:坐標系與參數方程)
在極坐標系中,設圓ρ=3上的點到直線ρ(cosθ+
3
sinθ)=2
的距離為d,求d的最大值.
D.(選修4-5:不等式選講)
設a,b,c為正數且a+b+c=1,求證:(a+
1
a
)2+(b+
1
b
)2+(c+
1
c
)2
100
3

查看答案和解析>>

同步練習冊答案