【題目】為了讓學(xué)生了解環(huán)保知識,增強環(huán)保意識,某中學(xué)舉行了一次“環(huán)保知識競賽”,共有900名學(xué)生參加了這次競賽. 為了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計. 請你根據(jù)尚未完成并有局部污損的頻率分布表和頻數(shù)分布直方圖,解答下列問題:
(1)填充頻率分布表的空格(將答案直接填在表格內(nèi));
(2)補全頻數(shù)分布直方圖;
(3)若成績在75.585.5分的學(xué)生為二等獎,問獲得二等獎的學(xué)生約為多少人?
【答案】(1)答案見解析 (2)答案見解析 (3)234人
【解析】
(1)在頻率分布表中,各組的頻數(shù)頻率樣本容量,再根據(jù)頻率的和等于1建立等式解之即可;
(2)根據(jù)頻率分布表補全頻數(shù)分布直方圖;
(3)成績在分的學(xué)生占成績在分的學(xué)生的,進而估算出頻率,結(jié)合共有900名學(xué)生參加了這次競賽可得答案.;
解:(1)由已知樣本容量為50,故第二組的頻數(shù)為,
第三組的頻率為,
第四組的頻數(shù)為:,頻率為:,
故頻率分布表為:
分組 | 頻數(shù) | 頻率 |
4 | 0.08 | |
8 | 0.16 | |
10 | 0.20 | |
16 | 0.32 | |
12 | 0.24 | |
合計 | 50 | 1.00 |
(2)如圖:
(3)成績在75.580.5分的學(xué)生占70.580.5分的學(xué)生的,因為成績在70.580.5分的學(xué)生頻率為0.2 ,所以成績在75.580.5分的學(xué)生頻率為0.1 ,
成績在80.585.5分的學(xué)生占80.590.5分的學(xué)生的,因為成績在80.590.5分的學(xué)生頻率為0.32 ,所以成績在80.585.5分的學(xué)生頻率為0.16
所以成績在75.585.5分的學(xué)生頻率為0.26,由于有900名學(xué)生參加了這次競賽,
所以該校獲得二等獎的學(xué)生約為0.26900=234(人)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為,為坐標(biāo)原點,是拋物線上異于的兩點.
(1)求拋物線的方程;
(2)若直線的斜率之積為,求證:直線過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(常數(shù)).
(1)討論的單調(diào)性;
(2)設(shè)是的導(dǎo)函數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值來衡量,質(zhì)量指標(biāo)值越大表明質(zhì)量越好,且質(zhì)量指標(biāo)值大于或等于 的產(chǎn)品為優(yōu)質(zhì)產(chǎn)品.現(xiàn)用兩種新配方(分別稱為 配方和 配方)做試驗,各生產(chǎn)了 件這種產(chǎn)品,并測量了每件產(chǎn)品的質(zhì)量指標(biāo)值(都在區(qū)間 內(nèi)),將這些數(shù)據(jù)分成 組: , , , ,得到如下兩個頻率分布直方圖:
已知這 種配方生產(chǎn)的產(chǎn)品利潤 (單位:百元)與其質(zhì)量指標(biāo)值 的關(guān)系式均為.
若以上面數(shù)據(jù)的頻率作為概率,分別從用 配方和 配方生產(chǎn)的產(chǎn)品中隨機抽取一件,且抽取的這 件產(chǎn)品相互獨立,則抽得的這兩件產(chǎn)品利潤之和為 的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點,且離心率為.過拋物線上一點作的切線交橢圓于,兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線,使得,若存在,求出的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為
(1)求頻率分布直方圖中的值;
(2)估計該企業(yè)的職工對該部門評分不低于80的概率;
(3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓()的離心率是,點在短軸上,且。
(1)球橢圓的方程;
(2)設(shè)為坐標(biāo)原點,過點的動直線與橢圓交于兩點。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)設(shè),討論的單調(diào)性;
(2)若不等式恒成立,其中為自然對數(shù)的底數(shù),求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com