在三棱錐P-ABC中,PA=PB=PC,底面△ABC是正三角形,M、N分別是側(cè)棱PB、PC的中點.若平面AMN⊥平面PBC,則側(cè)棱PB與平面ABC所成角的正切值是( 。
A、
5
2
B、
3
2
C、
2
2
D、
6
3
考點:直線與平面所成的角
專題:空間角
分析:取BC中點D,連結(jié)PD,AD,PD交MN于E,連結(jié)AE,作PO⊥平面ABC,交AD于O,連結(jié)OB,∠PBO是側(cè)棱PB與平面ABC所成角,由已知得AD=PA=PD,由此能求出側(cè)棱PB與平面ABC所成角的正切值.
解答: 解:取BC中點D,連結(jié)PD,AD,PD交MN于E,連結(jié)AE,
作PO⊥平面ABC,交AD于O,連結(jié)OB,
∠PBO是側(cè)棱PB與平面ABC所成角,
∵在三棱錐P-ABC中,PA=PB=PC,
底面△ABC是正三角形,
M、N分別是側(cè)棱PB、PC的中點,
∴E是PD中點,
∵平面AMN⊥平面PBC,∴AE⊥PD,
∴AD=AP,
設AD=2,則AD=PA=PD=
3

∴OB=OA=
2
3
AD=
2
3
3
,PO=
(
3
)2-(
2
3
3
)2
=
15
3
,
∴tan∠PBO=
PO
BO
=
15
3
2
3
3
=
5
2

∴側(cè)棱PB與平面ABC所成角的正切值是
5
2

故選:A.
點評:本題考查線面角的正切值的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

集合A={x|-2≤x≤2},B={y|y=
x
,0≤x≤4},則下列關(guān)系正確的是(  )
A、A⊆∁RB
B、B⊆∁RA
C、∁RA⊆∁RB
D、A∪B=R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以下四個命題中:
①命題“?x∈R,x2>0”的否定是“?x∈R,x2<0”;
②與兩定點(-1,0)、(1,0)距離之差的絕對值等于1的點的軌跡為雙曲線;
③“a=1是“直線x-ay=0與直線x+ay=0互相垂直”的充要條件;
④曲線
x2
25
+
y2
9
=1與曲線
x2
9-k
+
y2
25-k
=1(0<k<9)有相同的焦點;
⑤設A,B為兩個定點,若動點P滿足|PA|=10-|PB|,且|AB|=6,則|PA|的最大值為8;
其中真命題的序號是
 
.(填上所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在長為6cm的線段AB上任取一點C,現(xiàn)作一矩形,鄰邊長分別等于線段AC,BC的長,則該矩形面積小于8cm2,的概率是( 。
A、
1
3
B、
2
3
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=(1-x)(x2+ax+b)的圖象關(guān)于點(-2,0)對稱,x1,x2分別是f(x)的極大值和極小值點,則x1-x2=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若圓錐的底面半徑為2,軸截面為等腰直角三角形,則圓錐的全面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

P是雙曲線
x2
64
-
y2
36
=1
上一點,F(xiàn)1、F2是雙曲線的兩個焦點,且|PF1|=17,則|PF2|的值為( 。
A、33B、33或1
C、1D、25或9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+bx+c(0<3a<b),且f(x)≥0對任意實數(shù)x恒成立.
(I)當b=4
a
時,求c的最小值;
(Ⅱ)當
f(-2)
f(2)-f(0)
取最小值時,對任意的x1,x2∈[-3a,-a]都有|f(x1)-f(x2)|≤4a,
求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)y=tan2x+2tanx=-2,且x∈[-
π
3
,
π
4
],求函數(shù)的值域.

查看答案和解析>>

同步練習冊答案