8.若關(guān)于x的函數(shù)y=sinωx在[-$\frac{π}{3}$,$\frac{π}{2}}$]上的最大值為1,則ω的取值范圍是{ω|ω≥1或ω≤-$\frac{3}{2}$}.

分析 利用正弦函數(shù)的圖象特征,正弦函數(shù)的最大值,分類討論求得ω的取值范圍.

解答 解:∵關(guān)于x的函數(shù)y=sinωx在[-$\frac{π}{3}$,$\frac{π}{2}}$]上的最大值為1,
∴當(dāng)ω>0時(shí),由ω•$\frac{π}{2}$≥$\frac{π}{2}$,ω≥1,
當(dāng)ω<0時(shí),由ω•(-$\frac{π}{3}$)≥$\frac{π}{2}$,求得ω≤-$\frac{3}{2}$,
故答案為:{ω|ω≥1或ω≤-$\frac{3}{2}$ }.

點(diǎn)評(píng) 本題主要考查正弦函數(shù)的圖象特征,正弦函數(shù)的最大值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.讀如圖所示程序,對(duì)甲乙兩程序和輸出結(jié)果判斷正確的是(  )
A.S=1+2+3+…100,P=1+2+3+…100B.S=1+2+3+…99,P=1+2+3+…100
C.S=1+2+3+…99,P=1+2+3+…99D.S=1+2+3+…100,P=1+2+3+…99

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.“?x0∈R,ax02+ax0+1<0”為假命題,則a∈a∈[0,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.《九章算術(shù)》中,將底面是直角三角形的直三棱柱稱之為“塹堵”,已知某“塹堵”的三視圖如圖所示,俯視圖中虛線平分矩形的面積,則該“塹堵”的側(cè)面積為( 。
A.2B.4+2$\sqrt{2}$C.4+4$\sqrt{2}$D.6+4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在復(fù)平面內(nèi),到點(diǎn)-$\frac{1}{3}$+3i的距離與到直線l:3z+3$\overline z$+2=0的距離相等的點(diǎn)的軌跡是y=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知α,β∈(0,π),并且sin(5π-α)=$\sqrt{2}$cos(${\frac{7}{2}$π+β),$\sqrt{3}$cos(-α)=-$\sqrt{2}$cos(π+β),求α,β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知拋物線y2=2px(p>0)的焦點(diǎn)F(1,0),直線l:y=x+m與拋物線交于不同的兩點(diǎn)A,B,若0≤m<1,則△FAB的面積的最大值是$\frac{8\sqrt{6}}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若拋物線y2=16x上一點(diǎn)P到焦點(diǎn)的距離為8,則P點(diǎn)的坐標(biāo)為( 。
A.(1,4)B.(4,8)C.(4,-8)D.(4,±8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在平面直角坐標(biāo)系xOy中,若焦點(diǎn)在x軸的橢圓$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{4}$=1的離心率為$\frac{1}{2}$,則m=$\frac{16}{3}$.

查看答案和解析>>

同步練習(xí)冊答案