分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.
解答 解:由約束條件$\left\{\begin{array}{l}-1≤x+y≤1\\-1≤x-y≤1\end{array}\right.$作出可行域如圖,
化目標(biāo)函數(shù)z=x-2y為$y=\frac{x}{2}-\frac{z}{2}$,由圖可知,當(dāng)直線$y=\frac{x}{2}-\frac{z}{2}$過(guò)A(0,-1)時(shí),
直線在y軸上的截距最小,z有最大值為2.
故答案為:2.
點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [0,1) | B. | [1,2] | C. | (2,4] | D. | [2,4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $y={log_2}{2^{-x}}$ | B. | $y={({\frac{1}{2}})^{-x}}$ | C. | $y=\frac{1}{x+1}$ | D. | y=x2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
男性公務(wù)員 | 女性公務(wù)員 | 總計(jì) | |
有意愿生二胎 | 15 | 45 | |
無(wú)意愿生二胎 | 25 | ||
總計(jì) |
P(k2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | -$\frac{1}{8}$ | C. | 8 | D. | -8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [(k+$\frac{1}{2}$)π,(k+1)π] | B. | [(2k+1)π,2(k+1)π] | C. | [kπ,(k+$\frac{1}{2}$)π] | D. | [2kπ,(2k+1)π] |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com