9.若θ∈R,則直線y=sinθ•x+2的傾斜角的取值范圍是[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π).

分析 由直線的方程可得直線的斜率,進(jìn)而可得斜率的取值范圍,由正切函數(shù)的性質(zhì)可得.

解答 解:直線y=sinθ•x+2的斜率為sinθ,
設(shè)直線的傾斜角為α,則tanα=sinθ∈[-1,1]
∴α∈[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π);
故答案為:[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π).

點(diǎn)評(píng) 本題考查直線的傾斜角,涉及正弦函數(shù)的值域,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.過(guò)點(diǎn)H(1,-1)作拋物線Γ:x2=4y的兩條切線HA、HB,切點(diǎn)分別為A,B,則以線段AB為直徑的圓方程為${(x-1)^2}+{(y-\frac{3}{2})^2}=\frac{25}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=2lnx-3x2-11x.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若關(guān)于x的不等式f(x)≤(a-3)x2+(2a-13)x-2恒成立,求整數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.復(fù)數(shù)z1=$\sqrt{2}$+i,z2=-1+$\sqrt{3}$i在復(fù)平面上對(duì)應(yīng)的向量分別為$\overrightarrow{O{Z}_{1}}$,$\overrightarrow{O{Z}_{2}}$,則$\overrightarrow{O{Z}_{1}}$與$\overrightarrow{O{Z}_{2}}$的夾角為$arccos\frac{3-\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知雙曲線x2-y2=1,點(diǎn)F1,F(xiàn)2為其兩個(gè)焦點(diǎn),點(diǎn)P為雙曲線上一點(diǎn),若|PF1|=1,則|PF2|=( 。
A.3B.$2\sqrt{2}$C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.對(duì)數(shù)列{an},“an>0對(duì)于任意n∈N*成立”是“其前n項(xiàng)和數(shù)列{Sn}為遞增數(shù)列”的( 。
A.充分非必要條件B.必要非充分條件
C.充分必要條件D.非充分非必須條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.(1)已知$\lim_{x→∞}({\frac{{2{n^2}}}{n+2}-na})=b$,求a,b的值.
(2)已知$\lim_{x→∞}\frac{3^n}{{{3^{n+1}}+{{(a+1)}^n}}}=\frac{1}{3}$,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若x,y滿足約束條件$\left\{\begin{array}{l}-1≤x+y≤1\\-1≤x-y≤1\end{array}\right.$,則z=x-2y的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)$f(x)=cos(2x-\frac{π}{3})+2{sin^2}x$.
(Ⅰ)求函數(shù)f(x)的周期、單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)x∈$[0,\frac{π}{2}]$時(shí),求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案