精英家教網 > 高中數學 > 題目詳情
拋物線的焦點坐標是 (    )
A.(0,2)B.(0,-2)C.(4,0)D.(-4,0)
A

試題分析:拋物線中焦點在y軸上,焦點為
點評:拋物線焦點為,焦點為
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

直線與橢圓相交于,兩點,為坐標原點.
(Ⅰ)當點的坐標為,且四邊形為菱形時,求的長;
(Ⅱ)當點上且不是的頂點時,證明:四邊形不可能為菱形.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,南北方向的公路 ,A地在公路正東2 km處,B地在A東偏北300方向2 km處,河流沿岸曲線上任意一點到公路和到地距離相等.現要在曲線上一處建一座碼頭,向兩地運貨物,經測算,從、到修建費用都為a萬元/km,那么,修建這條公路的總費用最低是(  )萬元
A.(2+)aB.2(+1)aC.5aD.6ª

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,己知直線l與拋物線相切于點P(2,1),且與x軸交于點A,定點B(2,0).

(1)若動點M滿足,求點M軌跡C的方程:
(2)若過點B的直線(斜率不為零)與(1)中的軌跡C交于不同的兩點E,F(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

橢圓的離心率為,兩焦點分別為,點M是橢圓C上一點,的周長為16,設線段MO(O為坐標原點)與圓交于點N,且線段MN長度的最小值為.
(1)求橢圓C以及圓O的方程;
(2)當點在橢圓C上運動時,判斷直線與圓O的位置關系.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

在直角坐標系中,點與點關于原點對稱.點在拋物線上,且直線的斜率之積等于-,則_____________

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知拋物線y2=4x的準線過雙曲線=1(a>0,b>0)的左頂點,且此雙曲線的一條漸
近線方程為y=2x,則雙曲線的焦距等于 (  ).
A.B.2C.D.2

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如圖,在△ABC中,∠CAB=∠CBA=30°,AC、BC邊上的高分別為BD、AE,則以A、B為焦點,且過D、E的橢圓與雙曲線的離心率分別為,則     

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知拋物線,直線截拋物線C所得弦長為.
(1)求拋物線的方程;
(2)已知是拋物線上異于原點的兩個動點,記試求當取得最小值時的最大值.

查看答案和解析>>

同步練習冊答案