已知拋物線,直線截拋物線C所得弦長為.
(1)求拋物線的方程;
(2)已知是拋物線上異于原點的兩個動點,記試求當(dāng)取得最小值時的最大值.
(1)(2)

試題分析:解:(1)聯(lián)立


                      6(分)
       7(分)
設(shè)
        9(分)
當(dāng)時,此時      10(分)不妨設(shè)(其中為直線的傾斜角)當(dāng)且僅當(dāng),即時等號成立.
故當(dāng)時,的最大值為          14(分)
點評:主要是考查了直線與拋物線的位置關(guān)系的運用,屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點坐標(biāo)是 (    )
A.(0,2)B.(0,-2)C.(4,0)D.(-4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線C:,(為參數(shù))的普通方程為               (     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為 
(Ⅰ)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標(biāo)為,判斷點P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點Q是曲線C上的一個動點,求它到直線l的距離的最值;
(Ⅲ)請問是否存在直線 ,∥l且與曲線C的交點A、B滿足;
若存在請求出滿足題意的所有直線方程,若不存在請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知中心在坐標(biāo)原點焦點在軸上的橢圓C,其長軸長等于4,離心率為
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(0,1), 問是否存在直線與橢圓交于兩點,且?若存在,求出的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線和點,為拋物線上的點,則滿足的點有( )個。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知極坐標(biāo)系的極點為直角坐標(biāo)系的原點,極軸為x軸的正半軸,兩種坐標(biāo)系中的長度單位相同,已知曲線的極坐標(biāo)方程為
(1)求的直角坐標(biāo)方程;
(2)直線為參數(shù))與曲線C交于,兩點,與軸交于,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點為F,點為該拋物線上的動點,又點的最小值是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知M (-3,0)﹑N (3,0),P為坐標(biāo)平面上的動點,且直線PM與直線PN的斜率之積為常數(shù)m (m,m0),點P的軌跡加上M、N兩點構(gòu)成曲線C.
求曲線C的方程并討論曲線C的形狀;
(2) 若,曲線C過點Q (2,0) 斜率為的直線與曲線C交于不同的兩點AB,AB中點為R,直線OR (O為坐標(biāo)原點)的斜率為,求證 為定值;
(3) 在(2)的條件下,設(shè),且,求y軸上的截距的變化范圍.

查看答案和解析>>

同步練習(xí)冊答案