如圖,在△ABC中,∠CAB=∠CBA=30°,AC、BC邊上的高分別為BD、AE,則以A、B為焦點(diǎn),且過(guò)D、E的橢圓與雙曲線的離心率分別為,則     

試題分析:設(shè),則橢圓中,,雙曲線中,,
點(diǎn)評(píng):求離心率主要需要找關(guān)于的關(guān)系式,本題中利用橢圓和雙曲線的定義分別求出的關(guān)系,從而求得
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓過(guò)點(diǎn),其長(zhǎng)軸、焦距和短軸的長(zhǎng)的平方依次成等差數(shù)列.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與軸正半軸、軸分別交于點(diǎn),與橢圓分別交于點(diǎn),各點(diǎn)均不重合,且滿足. 當(dāng)時(shí),試證明直線過(guò)定點(diǎn).過(guò)定點(diǎn)(1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為,短軸長(zhǎng)為4.

(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)直線x=2與橢圓C交于P、Q兩點(diǎn),A、B是橢圓O上位于直線PQ兩側(cè)的動(dòng)點(diǎn),且直線AB的斜率為.
①求四邊形APBQ面積的最大值;
②設(shè)直線PA的斜率為,直線PB的斜率為,判斷+的值是否為常數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線的焦點(diǎn)坐標(biāo)是 (    )
A.(0,2)B.(0,-2)C.(4,0)D.(-4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知分別是橢圓的左右焦點(diǎn),過(guò)軸垂直的直線交橢圓于兩點(diǎn),若是銳角三角形,則橢圓離心率的范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,其左、右焦點(diǎn)分別為、,短軸長(zhǎng)為,點(diǎn)在橢圓上,且滿足的周長(zhǎng)為6.
(Ⅰ)求橢圓的方程;;
(Ⅱ)設(shè)過(guò)點(diǎn)的直線與橢圓相交于A、B兩點(diǎn),試問(wèn)在x軸上是否存在一個(gè)定點(diǎn)M使恒為定值?若存在求出該定值及點(diǎn)M的坐標(biāo),若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

曲線C:,(為參數(shù))的普通方程為               (     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直角坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為 
(Ⅰ)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為,判斷點(diǎn)P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最值;
(Ⅲ)請(qǐng)問(wèn)是否存在直線 ,∥l且與曲線C的交點(diǎn)A、B滿足
若存在請(qǐng)求出滿足題意的所有直線方程,若不存在請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線的焦點(diǎn)為F,點(diǎn)為該拋物線上的動(dòng)點(diǎn),又點(diǎn)的最小值是
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案