17.已知拋物線C:x2=2y的焦點(diǎn)為F,過(guò)拋物線上一點(diǎn)M作拋物線C的切線l,l交y軸于點(diǎn)N.
(1)判斷△MFN的形狀;
(2)若A,B兩點(diǎn)在拋物線C上,點(diǎn)D(1,1)滿足$\overrightarrow{AD}$+$\overrightarrow{BD}$=$\overrightarrow{0}$,若拋物線C上存在異于A,B的點(diǎn)E,使得經(jīng)過(guò)A,B,E三點(diǎn)的圓與拋物線在點(diǎn)E處的有相同的切線,求點(diǎn)E的坐標(biāo).

分析 (1)利用導(dǎo)數(shù)求得切線方程,當(dāng)x=0,求得N點(diǎn)坐標(biāo),根據(jù)拋物線的焦半徑公式,即可求得丨MF丨=丨NF丨,則△MFN為等腰三角形;
(2)根據(jù)向量的坐標(biāo)運(yùn)算,求得B點(diǎn)坐標(biāo),分別求得AE及AB的中垂線方程,即可求得△ABE外接圓的圓心,由kME•x0=-1,即可求得點(diǎn)E的坐標(biāo).

解答 解:(1)由題意可知:拋物線C:x2=2y的焦點(diǎn)F(0,$\frac{1}{2}$),
設(shè)M(x1,$\frac{{x}_{1}^{2}}{2}$),由y=$\frac{{x}^{2}}{2}$,y′=x,
則切線l的方程y-$\frac{{x}_{1}^{2}}{2}$=x1(x-x1),則y=x1x-$\frac{{x}_{1}^{2}}{2}$,
∴N(0,$\frac{{x}_{1}^{2}}{2}$),丨MF丨=$\frac{{x}_{1}^{2}}{2}$+$\frac{1}{2}$,丨NF丨=$\frac{{x}_{1}^{2}}{2}$+$\frac{1}{2}$,
丨MF丨=丨NF丨,
∴△MFN為等腰三角形;
(2)設(shè)A(x2,$\frac{{x}_{2}^{2}}{2}$),由$\overrightarrow{AD}$+$\overrightarrow{BD}$=$\overrightarrow{0}$,
∴D(1,1)是AB的中點(diǎn),B(2-x2,2-$\frac{{x}_{2}^{2}}{2}$),
由B在拋物線C上,則(2-x22=2(2-$\frac{{x}_{2}^{2}}{2}$),
解得:x2=0,x2=2,
∴A,B兩點(diǎn)的坐標(biāo)為(0,0),(2,2),
設(shè)E(x0,$\frac{{x}_{0}^{2}}{2}$),(x0≠0,x0≠2),
AB的中垂線方程y=-x+2,①AE的中垂線方程y=-$\frac{2}{{x}_{0}}$x+1+$\frac{{x}_{0}^{2}}{4}$,②

由①②解得:圓心M(-$\frac{{x}_{0}^{2}+2{x}_{0}}{4}$,$\frac{{x}_{0}^{2}+2{x}_{0}+8}{4}$),
由kME•x0=-1,整理得:x02-x0-2=0,
解得:x0=-1或x0=2,由x0≠0,x0≠2,
∴x0=-1,
∴E點(diǎn)坐標(biāo)為(-1,$\frac{1}{2}$).

點(diǎn)評(píng) 本題考查直線與拋物線的位置關(guān)系,向量數(shù)量積的坐標(biāo)運(yùn)算,三角形外接圓的求法,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.如果c<b<a,且ac<0,那么下列不等式中:①ab>ac;②c(b-a)>0;③cb2<ab2;④ac(a-c)<0,
不一定成立的是③(填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知數(shù)列{an}是等比數(shù)列,且a2•a5=$\frac{32}{9},{a_1}+{a_6}$=11.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=21,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知拋物線C:x2=2py(p>0)與圓O:x2+y2=8在第一象限內(nèi)的交點(diǎn)為M,拋物線C與圓O在點(diǎn)M處的切線斜率分別為k1,k2,且k1+k2=1.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)拋物線C在點(diǎn)M處的切線為l,過(guò)圓O上任意一點(diǎn)P作與l夾角為45°的直線,交l于A點(diǎn),求|PA|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某校高一(1)、(2)兩個(gè)班聯(lián)合開(kāi)展“詩(shī)詞大會(huì)進(jìn)校園,國(guó)學(xué)經(jīng)典潤(rùn)心田”古詩(shī)詞競(jìng)賽主題班會(huì)活動(dòng),主持人從這兩個(gè)班分別隨機(jī)選出20名同學(xué)進(jìn)行當(dāng)場(chǎng)測(cè)試,他們的測(cè)試成績(jī)按[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)分組,分組用頻率分布直方圖與莖葉統(tǒng)計(jì)如下(單位:分)
(1)班20名同學(xué)成績(jī)頻率分布直方圖

(2)班20名同學(xué)成績(jī)莖葉圖
45
52
64 5 6 8
70 5 5 8 8 8 8 9
8005 5
945
(Ⅰ)分別計(jì)算兩個(gè)班這20名同學(xué)的測(cè)試成績(jī)?cè)赱80,90)的頻率,并補(bǔ)全頻率分布直方圖;
(Ⅱ)從(2)班參加測(cè)試的不低于80分的同學(xué)中隨機(jī)選取兩人,求這兩人中至少有1人的成績(jī)?cè)?0分以上的概率;
(III )運(yùn)用所學(xué)統(tǒng)計(jì)知識(shí)分析比較兩個(gè)班學(xué)生的古詩(shī)詞水平.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=$\frac{ax}{x-1}$,若f(x)+f($\frac{1}{x}$)=3,則f(x)+f(2-x)=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列{an}前n項(xiàng)和Sn=$\frac{3}{2}$n2-$\frac{123}{2}$n,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)求Tn=|a1|+|a2|+…+|an|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知f(x)是定義在R上的函數(shù),f(x)=$\frac{1}{3}$x3+ax(a∈R),且曲線f(x)在x=$\frac{1}{2}$處的切線與直線y=-$\frac{3}{4}$x-1平行.
(1)求a的值.
(2)若函數(shù)y=f(x)-m在區(qū)間[-3,$\sqrt{3}$]上有三個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若不等式[y2+(2x-5)y-x2]•(lnx-lny)≤0對(duì)任意的y∈(0,+∞)恒成立,則實(shí)數(shù)x的取值集合為{$\frac{5}{2}$}.

查看答案和解析>>

同步練習(xí)冊(cè)答案