13.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=PB,E,F(xiàn)分別是PA,PB的中點.
(1)在圖中畫出過點E,F(xiàn)的平面α,使得α∥平面PCD(須說明畫法,并給予證明);
(2)若過點E,F(xiàn)的平面α∥平面PCD且截四棱錐P-ABCD所得截面的面積為$\frac{3\sqrt{2}}{2}$,求四棱錐P-ABCD的體積.

分析 (1)分別取AD,BC的中點H,G,連接EF、EH、HG、FG,推導(dǎo)出E、F、G、H四點共面,平面FEHG為所求平面α,先求出EH∥面PCD,再求出HG∥面PCD,從而得到α∥面PCD.
(2)設(shè)PA=2a,則EF=a,GH=2a,截面α面積為梯形EFGH的面積,推導(dǎo)出梯形EFGH為直角梯形,由此能求出四棱錐P-ABCD的體積.

解答 證明:(1)如圖所示,分別取AD,BC的中點H,G,
連接EF、EH、HG、FG,
∵EF∥AB,AB∥HG,∴EF∥HG,即E、F、G、H四點共面,
則平面FEHG為所求平面α,
∵EH∥PD,EH?面PCD,PD?面PCD,∴EH∥面PCD.
同理可得:HG∥面PCD,且HG∩EH=H,
∴α∥面PCD.
解:(2)設(shè)PA=2a,則EF=a,GH=2a,
由(1)知截面α面積為梯形EFGH的面積,
∵PA⊥面ABCD,AB是PB在平面ABCD的射影,且AB⊥BC,∴PB⊥BC,
同理可證:EH⊥GH,∴梯形EFGH為直角梯形.
在Rt△FBG中,BF=$\sqrt{2}a$,BG=a,∴GH=2a,
∴S梯形EFGH=$\frac{(EF+GH)•EH}{2}$=$\frac{3\sqrt{2}}{2}$,∴a=1,
∴VP-ABCD=$\frac{1}{3}$•PA•S正方形ABCD=$\frac{8}{3}$.

點評 本題考查滿足條件的平面的求法,考查四棱錐的體積的求法,考查推理論證能力、運算求解能力、空間想象能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,考查創(chuàng)新意識、應(yīng)用意識,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{1}{2}$m(x-1)2-2x+3+lnx(m≥1).
(1)求證:函數(shù)f(x)在定義域內(nèi)存在單調(diào)遞減區(qū)間[a,b];
(2)是否存在實數(shù)m,使得曲線C:y=f(x)在點P(1,1)處的切線l與曲線C有且只有一個公共點?若存在,求出實數(shù)m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.如圖,正方形ABCD中,AC與BD交于O,$\overrightarrow{BE}$=$\frac{3}{4}$$\overrightarrow{BD}$,$\overrightarrow{CF}$=$\frac{1}{4}$$\overrightarrow{CB}$,若$\overrightarrow{BD}$=λ$\overrightarrow{AE}$+μ$\overrightarrow{OF}$,則λ+μ的值為( 。
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.定義“函數(shù)y=f(x)是D上的a級類周期函數(shù)”如下:函數(shù)y=f(x),x∈D,對于給定的非零常數(shù) a,總存在非零常數(shù)T,使得定義域D內(nèi)的任意實數(shù)x都有af(x)=f(x+T)恒成立,此時T為f(x)的周期.若y=f(x)是[1,+∞)上的a級類周期函數(shù),且T=1,當x∈[1,2)時,f(x)=2x+1,且y=f(x)是[1,+∞)上的單調(diào)遞增函數(shù),則實數(shù)a的取值范圍為( 。
A.$[{\frac{5}{6},+∞})$B.[2,+∞)C.$[{\frac{5}{3},+∞})$D.[10,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.平行四邊形ABCD中,$\overrightarrow{AB}=λ\overrightarrow{AC}+μ\overrightarrow{DB}$,則λ+μ=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.梯形ABCD中AB∥CD,對角線AC,BD交于P1,過P1作AB的平行線交BC于點Q1,AQ1交BD于P2,過P2作AB的平行線交BC于點Q2,….,若AB=a,CD=b,則PnQn=$\frac{ab}{a+nb},n∈N*$(用a,b,n表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,E是邊長為2的正方形ABCD的AB邊的中點,將△AED與△BEC分別沿ED、EC折起,使得點A與點B重合,記為點P,得到三棱錐P-CDE.
(Ⅰ)求證:平面PED⊥平面PCD;
(Ⅱ)求點P到平面CDE的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如圖,已知△OAB,若點C滿足$\overrightarrow{AC}=2\overrightarrow{CB},\overrightarrow{OC}=λ\overrightarrow{OA}+μ\overrightarrow{OB}(λ,μ∈R)$,則$\frac{1}{λ}+\frac{1}{μ}$=
( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{2}{9}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖,D,C,B三點在地面同一直線上,從地面上C,D兩點望山頂A,測得它們的
仰角分別為45°和30°,已知CD=200米,點C位于BD上,則山高AB等于( 。
A.100$\sqrt{2}$米B.50($\sqrt{3}$+1)米C.$100({\sqrt{3}+1})$米D.200米

查看答案和解析>>

同步練習冊答案