分析 運(yùn)用三角形相似可得P1Q1=$\frac{ab}{a+b}$;P2Q2=$\frac{ab}{a+2b}$;歸納可得PnQn=$\frac{ab}{a+nb}$.運(yùn)用取倒數(shù),結(jié)合調(diào)查核實(shí)了的通項(xiàng)公式即可得到結(jié)論.
解答 解:梯形ABCD中,易得△CDP1∽△ABP1,
可得$\frac{CD}{AB}$=$\frac{C{P}_{1}}{A{P}_{1}}$=$\frac{a}$,
在△CAB中,P1Q1∥AB,
可得$\frac{{P}_{1}{Q}_{1}}{AB}$=$\frac{C{P}_{1}}{CA}$=$\frac{b+a}$,
即有P1Q1=$\frac{ab}{a+b}$;
同理可得$\frac{{P}_{2}{Q}_{2}}{AB}$=$\frac{{Q}_{1}{P}_{2}}{{Q}_{1}A}$=$\frac{\frac{ab}{a+b}}{\frac{ab}{a+b}+a}$=$\frac{a+2b}$,
即有P2Q2=$\frac{ab}{a+2b}$;
同理可得$\frac{{P}_{3}{Q}_{3}}{AB}$=$\frac{\frac{ab}{a+2b}}{\frac{ab}{a+2b}+a}$=$\frac{a+3b}$,
即有P3Q3=$\frac{ab}{a+3b}$;
…,
歸納可得PnQn=$\frac{ab}{a+nb}$.
理由:由PnQn=$\frac{a{P}_{n-1}{Q}_{n-1}}{{P}_{n-1}{Q}_{n-1}+a}$,
取倒數(shù)可得,$\frac{1}{{P}_{n}{Q}_{n}}$=$\frac{1}{{P}_{n-1}{Q}_{n-1}}$+$\frac{1}{a}$,
即有$\frac{1}{{P}_{n}{Q}_{n}}$=$\frac{1}{{P}_{1}{Q}_{1}}$+(n-1)•$\frac{1}{a}$=$\frac{a+b}{ab}$+(n-1)•$\frac{1}{a}$=$\frac{a+nb}{ab}$,
則PnQn=$\frac{ab}{a+nb}$.
故答案為:$\frac{ab}{a+nb},n∈N*$.
點(diǎn)評 本題考查歸納推理的運(yùn)用,注意應(yīng)用三角形相似,考查數(shù)列的通項(xiàng)公式的求法,以及化簡整理的運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2個(gè) | B. | 4個(gè) | C. | 8個(gè) | D. | 16個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com