【題目】如圖,有一直角墻角,兩邊的長度足夠長,若P處有一棵樹與兩墻的距離分別是4m和am(0<a<12),不考慮樹的粗細.現(xiàn)用16m長的籬笆,借助墻角圍成一個矩形花圃ABCD.設此矩形花圃的最大面積為u,若將這棵樹圍在矩形花圃內(nèi),則函數(shù)u=f(a)(單位m2)的圖象大致是(
A.
B.
C.
D.

【答案】B
【解析】解:設AD長為x,則CD長為16﹣x 又因為要將P點圍在矩形ABCD內(nèi),
∴a≤x≤12
則矩形ABCD的面積為x(16﹣x),
當0<a≤8時,當且僅當x=8時,u=64
當8<a<12時,u=a(16﹣a)
u= ,
分段畫出函數(shù)圖形可得其形狀與C接近
故選:B.
求矩形ABCD面積的表達式,又要注意P點在長方形ABCD內(nèi),所以要注意分析自變量的取值范圍,并以自變量的限制條件為分類標準進行分類討論.判斷函數(shù)的圖象即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求曲線在點處的切線方程;

(2)若函數(shù)有兩個極值點,且.

①求的取值范圍;

②求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C:,直線

(1)若直線被圓C截得的弦長為 ,求實數(shù)的值;

(2)當t =1時,由直線上的動點P引圓C的兩條切線,若切點分別為A,B,則直線AB是否恒過一個定點?若存在,求出該定點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了分析本校高中生的性別與是否喜歡數(shù)學之間的關系,在高中生中隨機地抽取了90名學生調(diào)查,得到了如下列聯(lián)表:

喜歡數(shù)學

不喜歡數(shù)學

總計

30

45

25

45

總計

90

(1)求①②③④處分別對應的值;

(2)能有多大把握認為“高中生的性別與喜歡數(shù)學”有關?

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】表示大于的整數(shù)的十位數(shù),例如,.已知,都是大于的互不相等的整數(shù),現(xiàn)有如下個命題:

①若,則;②,;

③若是質(zhì)數(shù),則也是質(zhì)數(shù);④若,成等差數(shù)列,則,可能成等比數(shù)列.

其中所有的真命題為( )

A. B. ③④ C. ①②④ D. ①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,為等邊三角形,是線段上的一點,且平面.

(1)求證:的中點;

(2)若的中點,連接,,,平面平面,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知從圓C:(x+1)2+(y﹣2)2=2外一點P(x1 , y1)向該圓引一條切線,切點為M,O為坐標原點,且有|PM|=|PO|,則當|PM|取最小值時點P的坐標為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在△ABC中,AB的中點為O,且OA=1,點D在AB的延長線上,且 .固定邊AB,在平面內(nèi)移動頂點C,使得圓M與邊BC,邊AC的延長線相切,并始終與AB的延長線相切于點D,記頂點C的軌跡為曲線Γ.以AB所在直線為x軸,O為坐標原點如圖所示建立平面直角坐標系.
(Ⅰ)求曲線Γ的方程;
(Ⅱ)設動直線l交曲線Γ于E、F兩點,且以EF為直徑的圓經(jīng)過點O,求△OEF面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了研究某班學生的腳長x(單位:厘米)和身高y(單位:厘米)的關系,從該班隨機抽取10名學生,根據(jù)測量數(shù)據(jù)的散點圖可以看出y與x之間有線性相關關系,設其回歸直線方程為 = x+ ,已知 xi=225, yi=1600, =4,該班某學生的腳長為24,據(jù)此估計其身高為( 。
A.160
B.163
C.166
D.170

查看答案和解析>>

同步練習冊答案