【題目】已知函數(shù),其中.
(1)設(shè)是函數(shù)的極值點,討論函數(shù)的單調(diào)性;
(2)若有兩個不同的零點和,且,
(i)求參數(shù)的取值范圍;
(ii)求證:.
【答案】(1)見解析;(2)(i),(ii)見解析.
【解析】
(1)求函數(shù)導(dǎo)數(shù),由可得解,進而得單調(diào)區(qū)間;
(2)(i)分析函數(shù)導(dǎo)數(shù)可得函數(shù)單調(diào)性,結(jié)合,所以,可得解;
(ii)先證當(dāng)時,若,得存在,進而證,再證時,,可得,構(gòu)造函數(shù),利用函數(shù)單調(diào)性即可證得.
(1),
若是函數(shù)的極值點,則,得,經(jīng)檢驗滿足題意,
此時,為增函數(shù),
所以當(dāng),單調(diào)遞減;
當(dāng),單調(diào)遞增
(2)(i), ,
記,則,
知在區(qū)間內(nèi)單調(diào)遞增.
又∵, ,
∴在區(qū)間內(nèi)存在唯一的零點,
即,于是, .
當(dāng)時, 單調(diào)遞減;
當(dāng)時, 單調(diào)遞增.
若有兩個不同的零點和,且,
易知,所以,解得.
(ii)當(dāng)時有,令.
由(i)中的單調(diào)性知,存在,當(dāng).
,所以.
下證當(dāng)時,.
由,
所以,
由(i)知,當(dāng),得..
所以,令
要證,即證.
令單調(diào)遞增,且,
所以單調(diào)遞增,所以.得證.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),)以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)曲線和交于,兩點,點,若,,成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且經(jīng)過點.
(1)求橢圓C的方程;
(2)設(shè)過點的直線l與橢圓C交于,兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在菱形中,,為線段的中點(如圖1).將沿折起到的位置,使得平面平面,為線段的中點(如圖2).
(Ⅰ)求證:;
(Ⅱ)求證:平面;
(Ⅲ)當(dāng)四棱錐的體積為時,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的方程,
(1)求直線和圓的直角坐標(biāo)方程;
(3)設(shè)圓與直線交于點、,若點的坐標(biāo)為,求,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校藝術(shù)專業(yè)300名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30),[30,40),…,[80,90],并整理得到如下頻率分布直方圖:
(1)從總體的300名學(xué)生中隨機抽取一人,估計其分?jǐn)?shù)小于70的概率;
(2)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(3)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,左、右焦點為,點在橢圓上,且點關(guān)于原點對稱,直線的斜率的乘積為.
(1)求橢圓的方程;
(2)已知直線經(jīng)過點,且與橢圓交于不同的兩點,若,判斷直線的斜率是否為定值?若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)設(shè).
①若函數(shù)在處的切線過點,求的值;
②當(dāng)時,若函數(shù)在上沒有零點,求的取值范圍;
(2)設(shè)函數(shù),且(),求證:當(dāng)時, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“克拉茨猜想”又稱“猜想”,是德國數(shù)學(xué)家洛薩克拉茨在1950年世界數(shù)學(xué)家大會上公布的一個猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半;如果為奇數(shù)就將它乘3加1,不斷重復(fù)這樣的運算,經(jīng)過有限步后,最終都能夠得到1.己知正整數(shù)經(jīng)過6次運算后得到1,則的值為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com