【題目】某學校藝術專業(yè)300名學生參加某次測評,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:[20,30),[30,40),,[80,90],并整理得到如下頻率分布直方圖:

(1)從總體的300名學生中隨機抽取一人,估計其分數(shù)小于70的概率;

(2)已知樣本中分數(shù)小于40的學生有5人,試估計總體中分數(shù)在區(qū)間[40,50)內的人數(shù);

(3)已知樣本中有一半男生的分數(shù)不小于70,且樣本中分數(shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.

【答案】10.4 215 332

【解析】

1)根據(jù)頻率分布直方圖求出樣本中分數(shù)小于70的頻率,用頻率估計概率值;

2)計算樣本中分數(shù)小于50的頻率和頻數(shù),估計總體中分數(shù)在區(qū)間,內的人數(shù);

3)由題意計算樣本中分數(shù)不小于70的學生人數(shù)以及男生、女生人數(shù),求男生和女生人數(shù)的比例.

解:(1)根據(jù)頻率分布直方圖可知,樣本中分數(shù)不小于70的頻率為(0.020.04)×100.6

所以樣本中分數(shù)小于70的頻率為10.60.4

所以從總體的300名學生中隨機抽取一人,其分數(shù)小于70的概率估計值為0.4

2)根據(jù)題意,樣本中分數(shù)不小于50的頻率為 (0.010.020.040.02)×100.9,

故樣本中分數(shù)小于50的頻率為0.1

故分數(shù)在區(qū)間[40,50)內的人數(shù)為100×0.155

所以總體中分數(shù)在區(qū)間[40,50)內的人數(shù)估計為

3)由題意可知,樣本中分數(shù)不小于70的學生人數(shù)為

(0.020.04)×10×10060,

所以樣本中分數(shù)不小于70的男生人數(shù)為

所以樣本中的男生人數(shù)為30×260,

女生人數(shù)為1006040,

男生和女生人數(shù)的比例為604032

所以根據(jù)分層抽樣原理,總體中男生和女生人數(shù)的比例估計為32

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某商場從20181月份起的前這個月,顧客對某商品的需求總量,(單位:件)與x的關系近似地滿足(其中,且),該商品第x月的進貨單價(單位:元)與x的近似關系是

1)寫出2018年第x月的需求量(單位:件)與x的函數(shù)關系式;

2)該商品每件的售價為185元,若不計其他費用且每月都能滿足市場需求,試問該商場2018年第幾個月銷售該商品的月利潤最大,最大月利潤為多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直角三角形所在的平面與半圓弧所在平面相交于,,分別為,的中點, 上異于,的點, .

1)證明:平面平面;

2)若點為半圓弧上的一個三等分點(靠近點)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù)

(1)討論函數(shù)的單調性;

(2)若的極值點,且曲線在兩點, 處的切線互相平行,這兩條切線在y軸上的截距分別為、,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

(1)設是函數(shù)的極值點,討論函數(shù)的單調性;

(2)若有兩個不同的零點,且,

(i)求參數(shù)的取值范圍;

(ii)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種水果按照果徑大小可分為四類:標準果、優(yōu)質果、精品果、禮品果.某采購商從采購的一批水果中隨機抽取個,利用水果的等級分類標準得到的數(shù)據(jù)如下:

等級

標準果

優(yōu)質果

精品果

禮品果

個數(shù)

10

30

40

20

(1)若將頻率是為概率,從這個水果中有放回地隨機抽取個,求恰好有個水果是禮品果的概率.(結果用分數(shù)表示)

(2)用樣本估計總體,果園老板提出兩種購銷方案給采購商參考.

方案:不分類賣出,單價為.

方案:分類賣出,分類后的水果售價如下:

等級

標準果

優(yōu)質果

精品果

禮品果

售價(元/kg)

16

18

22

24

從采購單的角度考慮,應該采用哪種方案?

(3)用分層抽樣的方法從這個水果中抽取個,再從抽取的個水果中隨機抽取個,表示抽取的是精品果的數(shù)量,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

設函數(shù)f(x)=alnx﹣bx2(x>0).

(1)若函數(shù)f(x)在x=1處于直線相切,求函數(shù)f(x)在上的最大值;

(2)當b=0時,若不等式f(x)≥m+x對所有的a∈[1,],x∈[1,e2]都成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是邊長為2的菱形,平面,,

1)證明:平面平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,已知平面,為等邊三角形,,,與平面所成角的正切值為.

(Ⅰ)證明:平面;

(Ⅱ)若的中點,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案