【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),)以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)曲線和交于,兩點(diǎn),點(diǎn),若,,成等比數(shù)列,求的值.
【答案】(1)曲線的普通方程是:,曲線的直角坐標(biāo)方程為:; (2)
【解析】
(1)根據(jù)參數(shù)方程化普通方程、極坐標(biāo)與直角坐標(biāo)互化的原則進(jìn)行化簡(jiǎn)即可得到結(jié)果;(2)利用在上,可寫出直線參數(shù)方程的標(biāo)準(zhǔn)形式;將參數(shù)方程代入的普通方程,利用的幾何意義可知:,,;根據(jù),,成等比數(shù)列,結(jié)合韋達(dá)定理可得到關(guān)于的方程,解方程求得結(jié)果.
(1)由題意得:曲線的普通方程是:
曲線的直角坐標(biāo)方程為:
(2)易知在上 可設(shè)直線的參數(shù)方程為:(為參數(shù))
將直線的參數(shù)方程代入曲線的普通方程,可得:
,整理可得:
設(shè)對(duì)應(yīng)的參數(shù)分別是,則,,
,
又,,成等比數(shù)列
則
即:,解得:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(1)設(shè)函數(shù)(其中為的導(dǎo)函數(shù)),判斷在上的單調(diào)性;
(2)若函數(shù)在定義域內(nèi)無零點(diǎn),試確定正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某蔬果經(jīng)銷商銷售某種蔬果,售價(jià)為每公斤25元,成本為每公斤15元.銷售宗旨是當(dāng)天進(jìn)貨當(dāng)天銷售.如果當(dāng)天賣不出去,未售出的全部降價(jià)以每公斤10元處理完.根據(jù)以往的銷售情況,得到如圖所示的頻率分布直方圖:
(1)根據(jù)頻率分布直方圖計(jì)算該種蔬果日需求量的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間中點(diǎn)值代表);
(2)該經(jīng)銷商某天購(gòu)進(jìn)了250公斤這種蔬果,假設(shè)當(dāng)天的需求量為公斤,利潤(rùn)為元.求關(guān)于的函數(shù)關(guān)系式,并結(jié)合頻率分布直方圖估計(jì)利潤(rùn)不小于1750元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 和所在平面互相垂直,且, 分別為AC、DC、AD的中點(diǎn)
(1)求證: 平面BCG;
(2)求三棱錐D-BCG的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)從2018年1月份起的前這個(gè)月,顧客對(duì)某商品的需求總量,(單位:件)與x的關(guān)系近似地滿足(其中,且),該商品第x月的進(jìn)貨單價(jià)(單位:元)與x的近似關(guān)系是.
(1)寫出2018年第x月的需求量(單位:件)與x的函數(shù)關(guān)系式;
(2)該商品每件的售價(jià)為185元,若不計(jì)其他費(fèi)用且每月都能滿足市場(chǎng)需求,試問該商場(chǎng)2018年第幾個(gè)月銷售該商品的月利潤(rùn)最大,最大月利潤(rùn)為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟(jì)全球化、信息化的發(fā)展,企業(yè)之間的競(jìng)爭(zhēng)從資源的爭(zhēng)奪轉(zhuǎn)向人才的競(jìng)爭(zhēng).吸引、留住培養(yǎng)和用好人才成為人力資源管理的戰(zhàn)略目標(biāo)和緊迫任務(wù).在此背景下,某信息網(wǎng)站在15個(gè)城市中對(duì)剛畢業(yè)的大學(xué)生的月平均收入薪資和月平均期望薪資做了調(diào)查,數(shù)據(jù)如圖所示.
(1)若某大學(xué)畢業(yè)生從這15座城市中隨機(jī)選擇一座城市就業(yè),求該生選中月平均收人薪資高于8000元的城市的概率;
(2)若從月平均收入薪資與月平均期望薪資之差高于1000元的城市中隨機(jī)選擇2座城市,求這2座城市的月平均期望薪資都高于8000元或都低于8000元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(為參數(shù))曲線C2的參數(shù)方程為(,為參數(shù))在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線l:θ=與C1,C2各有一個(gè)交點(diǎn).當(dāng)=0時(shí),這兩個(gè)交點(diǎn)間的距離為2,當(dāng)=時(shí),這兩個(gè)交點(diǎn)重合.
(1)分別說明C1,C2是什么曲線,并求出a與b的值;
(2)設(shè)當(dāng)=時(shí),l與C1,C2的交點(diǎn)分別為A1,B1,當(dāng)=-時(shí),l與C1,C2的交點(diǎn)為A2,B2,求四邊形A1A2B2B1的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)設(shè)是函數(shù)的極值點(diǎn),討論函數(shù)的單調(diào)性;
(2)若有兩個(gè)不同的零點(diǎn)和,且,
(i)求參數(shù)的取值范圍;
(ii)求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com