【題目】已知函數(shù)處的切線方程為.

1)求函數(shù)的解析式;

2)若關(guān)于的方程fx)=kex(其中e為自然對(duì)數(shù)的底數(shù))恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)的值.

【答案】(1)(2)

【解析】

1)求出原函數(shù)的導(dǎo)函數(shù),依題意,,得到關(guān)于ab的不等式組,求得ab的值,則函數(shù)解析式可求;

2)方程fx)=kex,即x2x+1kex,得k=(x2x+1ex,記Fx)=(x2x+1ex,利用導(dǎo)數(shù)求其極值,可知當(dāng)kk時(shí),它們有兩個(gè)不同交點(diǎn),因此方程fx)=kex恰有兩個(gè)不同的實(shí)根;

1fx)=ax2+bx+1,

依題設(shè),有,即,

解得,∴.

2)方程fx)=kex,即x2x+1kex,,可化為

,則

,得,

當(dāng)變化時(shí),、的變化情況如下表:

-

+

-

極小

極大

所以當(dāng)時(shí),取極小值;當(dāng)時(shí),取極大值,

時(shí),,且

時(shí),,

可知當(dāng)kk時(shí),它們有兩個(gè)不同交點(diǎn),因此方程fx)=kex恰有兩個(gè)不同的實(shí)根;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,直線與橢圓在第一象限內(nèi)的交點(diǎn)是,點(diǎn)軸上的射影恰好是橢圓的右焦點(diǎn),橢圓另一個(gè)焦點(diǎn)是,且.

(1)求橢圓的方程;

(2)直線過(guò)點(diǎn),且與橢圓交于兩點(diǎn),求的內(nèi)切圓面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)和直線,直線過(guò)直線上的動(dòng)點(diǎn)且與直線垂直,線段的垂直平分線與直線相交于點(diǎn)

I)求點(diǎn)的軌跡的方程;

II)設(shè)直線與軌跡相交于另一點(diǎn),與直線相交于點(diǎn),求的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)若,令,若的兩個(gè)極值點(diǎn),且,求正實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:萬(wàn)元)對(duì)年銷售量(單位:噸)和年利潤(rùn)(單位:萬(wàn)元)的影響.對(duì)近六年的年宣傳費(fèi)和年銷售量)的數(shù)據(jù)作了初步統(tǒng)計(jì),得到如下數(shù)據(jù):

年份

年宣傳費(fèi)(萬(wàn)元)

年銷售量(噸)

經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費(fèi)(萬(wàn)元)與年銷售量(噸)之間近似滿足關(guān)系式).對(duì)上述數(shù)據(jù)作了初步處理,得到相關(guān)的值如表:

1)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程;

2)已知這種產(chǎn)品的年利潤(rùn),的關(guān)系為若想在年達(dá)到年利潤(rùn)最大,請(qǐng)預(yù)測(cè)年的宣傳費(fèi)用是多少萬(wàn)元?

附:對(duì)于一組數(shù)據(jù),…,,其回歸直線中的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱錐,從、三點(diǎn)及各棱中點(diǎn)共9個(gè)點(diǎn)中任取不共面4點(diǎn),共______種不同的取法.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知數(shù)列1,,,3,33,,,,即當(dāng))時(shí),,記).

1)求的值;

2)求當(dāng)),試用nk的代數(shù)式表示);

3)對(duì)于,定義集合的整數(shù)倍,,且,求集合中元素的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(1)求函數(shù)的單調(diào)遞減區(qū)間;

(2)求函數(shù)在區(qū)間上的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)判斷函數(shù)的單調(diào)性;

2)若函數(shù)有極大值點(diǎn),求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案