【題目】已知三棱錐,從、、三點及各棱中點共9個點中任取不共面4點,共______種不同的取法.(用數字作答)
【答案】90
【解析】
由題意知從9個點中任取4個點有種取法,減去不合題意的結果,4點共面的情況有三類,取出的4個點位于四面體的同一個面上;取任一條棱上的3個點及該棱對棱的中點;由中位線構成的平行四邊形,用所有的結果減去不合題意的結果即可求出答案.
從9個點中任取4個點有種取法,
其中4點共面的情況有三類.
第一類,取出的4個點位于四面體的同一個面上,有中;
第二類,取底面BCD中任一條棱上的3個點及該棱對棱的中點,這4點共面,有3種;
第三類,由中位線構成的平行四邊形(其兩組對邊分別平行于四面體相對的兩條棱),它的4頂點共面,有3種.
以上三類情況不合要求應減掉,
所以9個點中任取不共面4點,不同的取法共有種.
故答案為:90.
科目:高中數學 來源: 題型:
【題目】已知點,,,設,,其中為坐標原點.
(1)設點在軸上方,到線段所在直線的距離為,且,求和線段的大小;
(2)設點為線段的中點,若,且點在第二象限內,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數在處的切線方程為.
(1)求函數的解析式;
(2)若關于的方程f(x)=kex(其中e為自然對數的底數)恰有兩個不同的實根,求實數的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】己知二次函數(、、均為實常數,)的最小值是0,函數的零點是和,函數滿足,其中,為常數.
(1)已知實數、滿足、,且,試比較與的大小關系,并說明理由;
(2)求證:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知橢圓的左頂點為,過的直線交橢圓于另一點,直線交軸于點,且.
(1)求橢圓的離心率;
(2)若橢圓的焦距為,為橢圓上一點,線段的垂直平分線在軸上的截距為(不與軸重合),求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A是以BC為直徑的圓O上異于B,C的動點,P為平面ABC外一點,且平面PBC⊥平面ABC,BC=3,PB=2,PC,則三棱錐P﹣ABC外接球的表面積為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下面有五個命題:
①函數的最小正周期是;
②終邊在y軸上的角的集合是;
③在同一坐標系中,函數的圖象和函數的圖象有一個公共點;
④把函數;
⑤在中,若,則是等腰三角形;
其中真命題的序號是( )
A.(1)(2)(3) B.(2)(3)(4)
C.(3)(4)(5) D.(1)(4)(5)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com