【題目】已知三棱錐,從、、三點(diǎn)及各棱中點(diǎn)共9個點(diǎn)中任取不共面4點(diǎn),共______種不同的取法.(用數(shù)字作答)

【答案】90

【解析】

由題意知從9個點(diǎn)中任取4個點(diǎn)有種取法,減去不合題意的結(jié)果,4點(diǎn)共面的情況有三類,取出的4個點(diǎn)位于四面體的同一個面上;取任一條棱上的3個點(diǎn)及該棱對棱的中點(diǎn);由中位線構(gòu)成的平行四邊形,用所有的結(jié)果減去不合題意的結(jié)果即可求出答案.

9個點(diǎn)中任取4個點(diǎn)有種取法,

其中4點(diǎn)共面的情況有三類.

第一類,取出的4個點(diǎn)位于四面體的同一個面上,有中;

第二類,取底面BCD中任一條棱上的3個點(diǎn)及該棱對棱的中點(diǎn),這4點(diǎn)共面,有3種;

第三類,由中位線構(gòu)成的平行四邊形(其兩組對邊分別平行于四面體相對的兩條棱),它的4頂點(diǎn)共面,有3.

以上三類情況不合要求應(yīng)減掉,

所以9個點(diǎn)中任取不共面4點(diǎn),不同的取法共有.

故答案為:90.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)為常數(shù).

(1)當(dāng)時,求函數(shù)的圖象在點(diǎn)處的切線方程;

(2)若函數(shù)有兩個不同的零點(diǎn),,

①當(dāng)時,求的最小值;

②當(dāng)時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),,設(shè),其中為坐標(biāo)原點(diǎn).

1)設(shè)點(diǎn)軸上方,到線段所在直線的距離為,且,求和線段的大;

2)設(shè)點(diǎn)為線段的中點(diǎn),若,且點(diǎn)在第二象限內(nèi),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】P是圓上的動點(diǎn),P點(diǎn)在x軸上的射影是D,點(diǎn)M滿足

1)求動點(diǎn)M的軌跡C的方程,并說明軌跡是什么圖形;

2)過點(diǎn)的直線l與動點(diǎn)M的軌跡C交于不同的兩點(diǎn)AB,求以OA,OB為鄰邊的平行四邊形OAEB的頂點(diǎn)E的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處的切線方程為.

1)求函數(shù)的解析式;

2)若關(guān)于的方程fx)=kex(其中e為自然對數(shù)的底數(shù))恰有兩個不同的實(shí)根,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知二次函數(shù)、均為實(shí)常數(shù),)的最小值是0,函數(shù)的零點(diǎn)是,函數(shù)滿足,其中,為常數(shù).

1)已知實(shí)數(shù)、滿足、,且,試比較的大小關(guān)系,并說明理由;

2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的左頂點(diǎn)為,過的直線交橢圓于另一點(diǎn),直線軸于點(diǎn),且.

1)求橢圓的離心率;

2)若橢圓的焦距為為橢圓上一點(diǎn),線段的垂直平分線軸上的截距為不與軸重合),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A是以BC為直徑的圓O上異于B,C的動點(diǎn),P為平面ABC外一點(diǎn),且平面PBC⊥平面ABCBC=3,PB=2PC,則三棱錐PABC外接球的表面積為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面有五個命題

函數(shù)的最小正周期是

終邊在y軸上的角的集合是;

在同一坐標(biāo)系中,函數(shù)的圖象和函數(shù)的圖象有一個公共點(diǎn);

把函數(shù);

中,若,則是等腰三角形;

其中真命題的序號是( )

A.(1)(2)(3) B.(2)(3)(4

C.(3)(4)(5) D.(1)(4)(5

查看答案和解析>>

同步練習(xí)冊答案