【題目】Sn表示等差數(shù)列{an}的前n項(xiàng)的和,且S4=S9 , a1=﹣12
(1)求數(shù)列的通項(xiàng)an及Sn;
(2)求和Tn=|a1|+|a2|+…+|an|

【答案】
(1)解:∵S4=S9,a1=﹣12,

∴4×(﹣12)+6d=9×(﹣12)+36d

解得d=2


(2)解:當(dāng)n≤6時(shí),an<0,|an|=﹣an

Tn=﹣(a1+a2+… =13n﹣n2,

當(dāng)n≥7時(shí),an≥0,

Tn=﹣(a1+a2+…+a6)+(a7+…

=Sn﹣2(a1+a2+…+a6

=n2﹣13n+84


【解析】(1)由已知結(jié)合等差數(shù)列前n項(xiàng)和公式,構(gòu)造關(guān)于公差d的方程,求出公差后,可得數(shù)列的通項(xiàng)an及Sn;(2)由(1)中數(shù)列的通項(xiàng)公式,可得數(shù)列前6項(xiàng)為負(fù),故可分n≤6和n≥7時(shí)兩種情況,結(jié)合等差數(shù)列前n項(xiàng)和公式求Tn
【考點(diǎn)精析】認(rèn)真審題,首先需要了解等差數(shù)列的前n項(xiàng)和公式(前n項(xiàng)和公式:),還要掌握數(shù)列的前n項(xiàng)和(數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= sin2x﹣cos2x.
(1)求函數(shù)f(x)的最小正周期和最大值;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C:y2=8x的焦點(diǎn)為F,過(guò)F作傾斜角為60°的直線l.
(1)求直線l的方程;
(2)求直線l被拋物線C所截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}是等差數(shù)列,其中a1=25,a4=16
(1)求{an}的通項(xiàng);
(2)求a1+a3+a5+…+a19值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓與坐標(biāo)軸交于(如圖).

1)點(diǎn)是圓上除外的任意點(diǎn)(如圖1),與直線交于不同的兩點(diǎn),求的最小值;

2)點(diǎn)是圓上除外的任意點(diǎn)(如圖2),直線軸于點(diǎn),直線于點(diǎn).設(shè)的斜率為的斜率為,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A是函數(shù)y=lg(6+5x﹣x2)的定義域,集合B是不等式x2﹣2x+1﹣a2≥0(a>0)的解集.p:x∈A,q:x∈B.
(1)若A∩B=,求a的取值范圍;
(2)若¬p是q的充分不必要條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為﹣3.
(1)求f(x)的解析式;
(2)求過(guò)點(diǎn)A(2,2)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形垂直于正方形垂直于平面.且

(1)求三棱錐的體積;

(2)求證:面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將直線2x﹣y+λ=0沿x軸向左平移1個(gè)單位,所得直線與圓x2+y2+2x﹣4y=0相切,則實(shí)數(shù)λ的值為(
A.﹣3或7
B.﹣2或8
C.0或10
D.1或11

查看答案和解析>>

同步練習(xí)冊(cè)答案