分析 (Ⅰ)當(dāng)n=1時,a1=S1,n≥1時,an+1=Sn+1-Sn,化簡整理,結(jié)合等差數(shù)列的定義和通項公式,即可得到所求;
(Ⅱ)由(Ⅰ)得${S}_{n}=\frac{1}{2}{a}_{n}({a}_{n}+1)=\frac{1}{2}n(n+1)$,可得$_{n}=\frac{1}{{S}_{n}}=\frac{2}{n(n+1)}=\frac{2}{n}-\frac{2}{n+1}$,再由數(shù)列的求和方法:裂項相消求和,化簡即可得到所求和.
解答 解:(Ⅰ) ${a}_{1}={S}_{1}=\frac{1}{2}{a}_{1}({a}_{1}+1)$,a1>0,
解得a1=1…(1分)
?n∈N*,${a}_{n+1}={S}_{n+1}-{S}_{n}=\frac{1}{2}{a}_{n+1}({a}_{n+1}+1)-\frac{1}{2}{a}_{n}({a}_{n}+1)$ …(2分)
移項整理并因式分解得:(an+1-an-1)(an+1+an)=0…(4分)
因為{an}是正項數(shù)列,所以an+1-an-1=0,an+1-an=1…(5分)
{an}是首項a1=1、公差為1的等差數(shù)列,an=n…(6分)
(Ⅱ)由(Ⅰ)得${S}_{n}=\frac{1}{2}{a}_{n}({a}_{n}+1)=\frac{1}{2}n(n+1)$ …(7分)
$_{n}=\frac{1}{{S}_{n}}=\frac{2}{n(n+1)}=\frac{2}{n}-\frac{2}{n+1}$,…(8分)
${T}_{n}=_{1}+_{2}+…+_{n}=(\frac{2}{1}-\frac{2}{2})+(\frac{2}{2}-\frac{2}{3})+…+(\frac{2}{n}-\frac{2}{n+1})$,…(10分)
=$(\frac{2}{1}-\frac{2}{n+1})=\frac{2n}{n+1}$.…(12分)
點評 不同考查數(shù)列的通項公式的求法,注意運用數(shù)列的遞推式,考查等差數(shù)列的通項公式的運用,以及數(shù)列的求和方法:裂項相消求和,考查化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 46,45 | B. | 45,46 | C. | 45,45 | D. | 47,45 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{ln5}{5}$,$\frac{ln2}{2}$) | B. | [$\frac{ln5}{5}$,$\frac{ln3}{3}$) | C. | ($\frac{ln5}{5}$,$\frac{ln2}{2}$] | D. | ($\frac{ln5}{5}$,$\frac{ln3}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 4 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,6] | B. | [-2,6] | C. | [0,2] | D. | [-2,2] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com