如圖,在正方體ABCD-A
1B
1C
1D
1中,
(1)畫出二面角A-B
1C-C
1的平面角;
(2)求證:面BB
1DD
1⊥面AB
1C.
考點(diǎn):二面角的平面角及求法,平面與平面垂直的判定
專題:空間位置關(guān)系與距離,空間角
分析:(1)取B1C的中點(diǎn)O,連結(jié)AO,C1O,由AB1=AC,B1C1=CC1,得∠AOC1是二面角A-B1C-C1的平面角.
(2)由已知得AC⊥BD,AC⊥BB1,從而AC⊥平面BB1DD1,由此能證明面BB1DD1⊥面AB1C.
解答:
(1)解:在正方體ABCD-A
1B
1C
1D
1中,
取B
1C的中點(diǎn)O,連結(jié)AO,C
1O,
∵AB
1=AC,B
1C
1=CC
1,
∴AO⊥B
1C,C
1O⊥B
1C,
∴∠AOC
1是二面角A-B
1C-C
1的平面角.
(2)證明:∵ABCD是正方形,∴AC⊥BD,
∵正方體ABCD-A
1B
1C
1D
1中,AC⊥BB
1,
BD∩BB
1=B,
∴AC⊥平面BB
1DD
1,
∵AC?平面AB
1C,
∴面BB
1DD
1⊥面AB
1C.
點(diǎn)評(píng):本題考查二面角的平面角的作法,考查平面與平面垂直的證明,是中檔題,解題時(shí)要注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:
題型:
y=
的定義域?yàn)?div id="tztd3nb" class='quizPutTag' contenteditable='true'>
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知函數(shù)f(x)=a
x+log
ax(a>0且a≠1)在[1,2]上的最大值與最小值之和為log
a2+6,則a=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
如圖,四邊形OABC的對(duì)角線OB與AC相交于點(diǎn)P,已知
=2m+m,且
=λ(m,λ∈R),則實(shí)數(shù)λ的值為.( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
設(shè)直線l:x=ty+
與拋物線y
2=2px(p>0)交于不同兩點(diǎn)A,B點(diǎn),D為拋物線準(zhǔn)線上一點(diǎn),當(dāng)△ABD為正三角形時(shí),求D點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
若
=,則實(shí)數(shù)x的取值集合為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
在△ABC中,已知AB=6,B=60°,cos(B+C)=-
,若D為△ABC外接圓劣弧
上的動(dòng)點(diǎn).
(1)求sinC;
(2)求△ACD的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<
)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求f(x)的單調(diào)遞增區(qū)間;
(3)如何由函數(shù)y=2sin2x的圖象通過(guò)適當(dāng)?shù)淖儞Q得到函數(shù)f(x)的圖象,寫出變換過(guò)程.
查看答案和解析>>