A. | 4 | B. | -4 | C. | $\frac{1}{4}$ | D. | -$\frac{1}{4}$ |
分析 由已知點的坐標(biāo)求出$|\overrightarrow|$,并得到兩向量得夾角,然后代入向量在向量方向上的投影公式得答案.
解答 解:∵$\overrightarrow{a}$=(2,0),$\overrightarrow$=(-4,0),
∴$|\overrightarrow|=4$,cos$<\overrightarrow{a},\overrightarrow>=π$,
∴向量$\overrightarrow$在向量$\overrightarrow{a}$方向上的投影為$|\overrightarrow|cos<\overrightarrow{a},\overrightarrow>=4cosπ=-4$.
故選:B.
點評 本題考查平面向量的數(shù)量積運算,考查了向量在向量方向上的投影的概念,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 4 | C. | $\frac{5}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若p∨q為假命題,則p∧q為假命題 | |
B. | 若a,b∈[0,1],則不等式a2+b2<$\frac{1}{4}$成立的概率是$\frac{π}{16}$ | |
C. | 命題“?x∈R使得x2+x+1<0”的否定是:“?x∈R,x2+x+1≥0” | |
D. | 已知函數(shù)f(x)可導(dǎo),則“f′(x0)=0”是“x0是函數(shù)f(x)極值點”的充要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{70}{29}$ | B. | $\frac{29}{12}$ | C. | $\frac{29}{70}$ | D. | $\frac{169}{70}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x3 | B. | y=$\sqrt{x}$ | C. | y=$\frac{1}{x}$ | D. | y=($\frac{1}{2}$)x |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com