條件 | 方程 |
①△ABC周長為10 | C1:y2=25 |
②△ABC面積為10 | C2:x2+y2=4(y≠0) |
③△ABC中,∠A=90° | C3:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1(y≠0) |
A. | C3,C1,C2 | B. | C1,C2,C3 | C. | C3,C2,C1 | D. | C1,C3,C2 |
分析 ①中可轉(zhuǎn)化為A點(diǎn)到B、C兩點(diǎn)距離之和為常數(shù),符合橢圓的定義,利用定義法求軌跡方程;②中利用三角形面積公式可知A點(diǎn)到BC距離為常數(shù),軌跡為兩條直線;③中∠A=90°,可用斜率或向量處理.
解答 解:①△ABC的周長為10,即AB+AC+BC=10,
∵BC=4,∴AB+AC=6>BC,
故動(dòng)點(diǎn)A的軌跡為橢圓,與C3對(duì)應(yīng);
②△ABC的面積為10,∴$\frac{1}{2}$BC•|y|=10,即|y|=5,與C1對(duì)應(yīng);
③∵∠A=90°,∴$\overrightarrow{AB}•\overrightarrow{AC}$=(-2-x,-y)(2-x,-y)=x2+y2-4=0,與C2對(duì)應(yīng).
故選:A.
點(diǎn)評(píng) 本題考查軌跡方程的求法,考查直接法、定義法求軌跡方程,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | $\frac{6}{5}$ | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 有最小值 $\frac{{11+2\sqrt{10}}}{3}$ | B. | 有最大值$\frac{{11+2\sqrt{10}}}{3}$ | ||
C. | 有最小值$\frac{{11-2\sqrt{10}}}{3}$ | D. | 有最大值$\frac{{11-2\sqrt{10}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | a<c<b | C. | b<a<c | D. | c<a<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | $\frac{{2\sqrt{5}}}{5}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com