分析 (1)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調區(qū)間即可;
(2)要證$ln({1+\frac{1}{n}})>\frac{1}{n+1}$只需證$lnx>1-\frac{1}{x}({1<x≤2})$,根據(jù)函數(shù)的單調性得到$lnx≥1-\frac{1}{x}$,從而證出結論即可.
解答 解:(1)$f(x)=\frac{1}{x}+lnx$,x∈(0,+∞),
則$f'(x)=-\frac{1}{x^2}+\frac{1}{x}=\frac{x-1}{x^2}$,解f'(x)<0,
得0<x<1,解f'(x)>0,得x>1.
∴函數(shù)f(x)的單調遞減區(qū)間為(0,1),
單調遞增區(qū)間為(1,+∞).
(2)${({1+\frac{1}{n}})^{n+1}}>e?({n+1})ln({1+\frac{1}{n}})>1?ln({1+\frac{1}{n}})>\frac{1}{n+1}$,
令$1+\frac{1}{n}=x({1<x≤2})$,則$\frac{1}{n+1}=1-\frac{1}{x}$,
∴要證$ln({1+\frac{1}{n}})>\frac{1}{n+1}$只需證$lnx>1-\frac{1}{x}({1<x≤2})$,
由(1)知f(x)min=f(1),
∴$f(x)=\frac{1}{x}+lnx≥f(1)=1$,即$lnx≥1-\frac{1}{x}$,
∵1<x≤2,
∴$lnx>1-\frac{1}{x}$,從而${({1+\frac{1}{n}})^{n+1}}>2$.
點評 本題考查了函數(shù)的單調性問題,考查導數(shù)的應用以及不等式的證明,是一道中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | $\frac{5}{4}$ | D. | $-\frac{5}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{7}{27}$ | B. | $\frac{2}{9}$ | C. | $\frac{2}{27}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com