函數(shù)f(x)=acos(ax+θ)(a>0)圖象上兩相鄰的最低點與最高點之間的距離的最小值是   
【答案】分析:求出函數(shù)的最大值,函數(shù)的周期,通過直角三角形,利用基本不等式即可求出同一周期內(nèi)的最高點與最低點之間距離的最小值.
解答:解:因為函數(shù)y=acos(ax+θ)的最大值為:|a|,周期為 T=,
所以同一周期內(nèi)的最高點與最低點之間距離為:==(當(dāng)且僅當(dāng)a=時等號成立).
故答案為:
點評:本題是基礎(chǔ)題,考查三角函數(shù)圖象的理解,三角函數(shù)的最值、周期的應(yīng)用,基本不等式的應(yīng)用,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)為奇函數(shù),該函數(shù)的部分圖象如圖所示,△EFG是邊長為2的等邊三角形,則f(1)的值為( 。
A、-
3
2
B、-
6
2
C、
3
D、-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的圖象向右平移
π
8
,再橫坐標(biāo)伸長為原來的2倍、縱坐標(biāo)縮小為原來的一半得到函數(shù)y=sinx,則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|<
π
2
,x∈R)的圖象的一部分如下圖所示. 
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[-
π
4
,
6
]時,求函數(shù)y=f(x)+f(x+
π
3
)的最大值與最小值及相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Acos(ωx+φ)(x∈R)的圖象的一部分如圖所示,其A>0,ω>0,|φ|<
π
2
,為了得到函f(x)的圖象,只要將函數(shù)g(x)=2cos2
x
2
-2sin2
x
2
(x∈R)的圖象上所有的點( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•普陀區(qū)二模)已知函數(shù)f(x)=Acos(ωx+?)(A>0,ω>0,-
π
2
<?<0
)的圖象與y軸的交點為(0,1),它在y軸右側(cè)的第一個最高點和第一個最低點的坐標(biāo)分別為(x0,2)和(x0+2π,-2)
(1)求函數(shù)f(x)的解析式;
(2)若銳角θ滿足cosθ=
1
3
,求f(2θ)的值.

查看答案和解析>>

同步練習(xí)冊答案