4.已知α是銳角,且cos(α+$\frac{π}{5}$)=$\frac{1}{3}$,則cos(2α+$\frac{π}{15}$)=(  )
A.$\frac{4\sqrt{6}-7}{18}$B.$\frac{7-4\sqrt{6}}{18}$C.$\frac{\sqrt{3}+\sqrt{2}}{6}$D.$\frac{\sqrt{3}-\sqrt{2}}{6}$

分析 由題意可得sin(α+$\frac{π}{5}$),進(jìn)而由二倍角公式可得sin(2α+$\frac{2π}{5}$)和cos(2α+$\frac{2π}{5}$),代入cos(2α+$\frac{π}{15}$)=cos[(2α+$\frac{2π}{5}$)-$\frac{π}{3}$]=$\frac{1}{2}$cos(2α+$\frac{π}{15}$)+$\frac{\sqrt{3}}{2}$sin(2α+$\frac{π}{15}$)化簡計(jì)算可得答案.

解答 解:∵α是銳角,且cos(α+$\frac{π}{5}$)=$\frac{1}{3}$,
∴sin(α+$\frac{π}{5}$)=$\sqrt{1-co{s}^{2}(α+\frac{π}{5})}$=$\frac{2\sqrt{2}}{3}$,
∴sin(2α+$\frac{2π}{5}$)=2×$\frac{1}{3}×\frac{2\sqrt{2}}{3}$=$\frac{4\sqrt{2}}{9}$,
cos(2α+$\frac{2π}{5}$)=($\frac{1}{3}$)2-($\frac{2\sqrt{2}}{3}$)2=-$\frac{7}{9}$,
∴cos(2α+$\frac{π}{15}$)=cos[(2α+$\frac{2π}{5}$)-$\frac{π}{3}$]
=$\frac{1}{2}$cos(2α+$\frac{π}{15}$)+$\frac{\sqrt{3}}{2}$sin(2α+$\frac{π}{15}$)
=$\frac{1}{2}$×(-$\frac{7}{9}$)+$\frac{\sqrt{3}}{2}$×$\frac{4\sqrt{2}}{9}$=$\frac{4\sqrt{6}-7}{18}$.
故選:A.

點(diǎn)評 本題考查兩角和與差的三角函數(shù)公式,涉及同角三角函數(shù)基本關(guān)系和二倍角公式,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖所示的陰影部分是由x軸,直線x=1及曲線y=ex-1圍成,現(xiàn)向矩形區(qū)域OABC內(nèi)隨機(jī)投擲一點(diǎn),則該點(diǎn)落在陰影部分的概率是( 。
A.$\frac{1}{e}$B.$\frac{1}{e-1}$C.$1-\frac{1}{e}$D.$\frac{e-2}{e-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知A(-2,3,4),在y軸上求一點(diǎn)B,使|AB|=3$\sqrt{5}$,則點(diǎn)B的坐標(biāo)為(0,8,0)或(0,2,0) .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)a=(lg2)2+(lg5)2+lg4lg5+2log510+log50.25,b=(log2125+log85)•log52,試比較a與b的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在等差數(shù)列{an}中,已知S15=90,則a8=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=sinωx-cosωx(ω>0),x∈R,若函數(shù)f(x)在(-ω,ω)上是增函數(shù),且圖象關(guān)于直線x=-ω對稱,則ω=(  )
A.2B.πC.$\frac{\sqrt{π}}{2}$D.$\frac{\sqrt{3π}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知$sin(\frac{π}{6}-α)=\frac{4}{5},cos(α+\frac{π}{3})$的值是(  )
A.$\frac{3}{5}$B.$-\frac{3}{5}$C.$\frac{4}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若函數(shù)y=ax-b+1的圖象恒過定點(diǎn)(1,2),則b=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某小說網(wǎng)站為了了解讀者群對網(wǎng)絡(luò)小說的閱讀情況,隨機(jī)抽取了100名讀者進(jìn)行調(diào)查,具體情況如表:
 日均閱讀小說時間(分鐘) (0,30](30,60] (60,90](90,120] (120,150](150,+∞) 
 人數(shù)15  2124  28 4
將日均閱讀小說高于1.5個小時的讀者稱為“小說迷”.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,根據(jù)此資料,你是否有90%的把握認(rèn)為“小說迷”與性別有關(guān)?
  非小說迷小說迷 合計(jì)
 男  1548 
 女   
 合計(jì)   
(2)將上述調(diào)查所得到的頻率視為概率,從該網(wǎng)站的讀者(數(shù)量很大)中抽取3人,記被抽取的3人中的“小說迷”人數(shù)為X,若每次抽取結(jié)果是相互獨(dú)立的,求X的分布列和期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
 P(K2≥k0 0.500.25  0.10 0.050.025  0.0100.005  0.001
 k0 0.455 1.3232.706 3.841  5.0246.635  7.87910.828 

查看答案和解析>>

同步練習(xí)冊答案