【題目】已知函數(shù),,且點(diǎn)處取得極值.

)若關(guān)于的方程在區(qū)間上有解,求的取值范圍;

)證明:

【答案】;()證明見(jiàn)解析.

【解析】

試題()求導(dǎo),利用值;分離常數(shù),構(gòu)造函數(shù),轉(zhuǎn)化為求函數(shù)的值域問(wèn)題;()作差構(gòu)造函數(shù),將證明不等式恒成立問(wèn)題轉(zhuǎn)化為求函數(shù)的最值問(wèn)題.

試題解析:解:(,

函數(shù)在點(diǎn)處取得極值,

,即當(dāng)時(shí),

,則得.經(jīng)檢驗(yàn)符合題意 2

,

, 則

當(dāng)時(shí),的變化情況表:


1

1,2

2

2,3

3



+

0

-





極大值



計(jì)算得:,,

所以的取值范圍為6

)證明:令,

,

,則

函數(shù)遞增,上的零點(diǎn)最多一個(gè)

,,存在唯一的使得, 9

且當(dāng)時(shí),;當(dāng)時(shí),

即當(dāng)時(shí),;當(dāng)時(shí),

遞減,在遞增,從而

,兩邊取對(duì)數(shù)得:,

,從而證得12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將正方形沿對(duì)角線折成直二面角,有如下四個(gè)結(jié)論:

1;(2是等邊三角形;

3與平面所成的角為60°;(4所成的角為.

其中錯(cuò)誤的結(jié)論是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩個(gè)分類變量XY,由他們的觀測(cè)數(shù)據(jù)計(jì)算得到K2的觀測(cè)值范圍是3.841<k<6.635,據(jù)K2的臨界值表,則以下判斷正確的是(

P(K2k)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.01

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

A.在犯錯(cuò)誤概率不超過(guò)0.05的前提下,認(rèn)為變量XY有關(guān)系

B.在犯錯(cuò)誤概率不超過(guò)0.05的前提下,認(rèn)為變量XY沒(méi)有關(guān)系

C.在犯錯(cuò)誤概率不超過(guò)0.01的前提下,認(rèn)為變量XY有關(guān)系

D.在犯錯(cuò)誤概率不超過(guò)0.01的前提下,認(rèn)為變量XY沒(méi)有關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,側(cè)面,已知,,點(diǎn)E是棱的中點(diǎn).

1)求證:平面ABC

2)在棱CA上是否存在一點(diǎn)M,使得EM與平面所成角的正弦值為,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)四件參賽作品只評(píng)一件一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲,乙,丙,丁四位同學(xué)對(duì)這四件參賽作品預(yù)測(cè)如下:

甲說(shuō):作品獲得一等獎(jiǎng)”; 乙說(shuō):作品獲得一等獎(jiǎng)”;

丙說(shuō):兩件作品未獲得一等獎(jiǎng)”; 丁說(shuō):作品獲得一等獎(jiǎng)”.

評(píng)獎(jiǎng)揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在多面體中,四邊形是正方形,平面,,的中點(diǎn).

1)求證:

2)求平面與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某公司舉行的一次真假游戲的有獎(jiǎng)競(jìng)猜中,設(shè)置了“科技”和“生活”這兩類試題,規(guī)定每位職工最多競(jìng)猜3次,每次競(jìng)猜的結(jié)果相互獨(dú)立.猜中一道“科技”類試題得4分,猜中一道“生活”類試題得2分,兩類試題猜不中的都得0分.將職工得分逐次累加并用X表示,如果X的值不低于4分就認(rèn)為通過(guò)游戲的競(jìng)猜,立即停止競(jìng)猜,否則繼續(xù)競(jìng)猜,直到競(jìng)猜完3次為止.競(jìng)猜的方案有以下兩種:方案1:先猜一道“科技”類試題,然后再連猜兩道“生活”類試題;

方案2:連猜三道“生活”類試題.

設(shè)職工甲猜中一道“科技”類試題的概率為0.5,猜中一道“生活”類試題的概率為0.6.

(1)你認(rèn)為職工甲選擇哪種方案通過(guò)競(jìng)猜的可能性大?并說(shuō)明理由.

(2)職工甲選擇哪一種方案所得平均分高?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代儒家要求學(xué)生掌握六種基本才能:禮樂(lè)射御書(shū)數(shù),某校國(guó)學(xué)社團(tuán)周末開(kāi)展六藝課程講座活動(dòng),每天連排六節(jié),每藝一節(jié),排課有如下要求:數(shù)不能相鄰,樂(lè)必須相鄰,則六藝課程講座不同的排課順序共有(

A.24B.72C.96D.144

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中醫(yī)藥,是包括漢族和少數(shù)民族醫(yī)藥在內(nèi)的我國(guó)各民族醫(yī)藥的統(tǒng)稱,是反映中華民族對(duì)生命、健康和疾病的認(rèn)識(shí),具有悠久歷史傳統(tǒng)和獨(dú)特理論及技術(shù)方法的醫(yī)藥學(xué)體系,是中華民族的瑰寶.某科研機(jī)構(gòu)研究發(fā)現(xiàn),某品種中醫(yī)藥的藥物成分甲的含量(單位:克)與藥物功效(單位:藥物單位)之間具有關(guān)系.檢測(cè)這種藥品一個(gè)批次的5個(gè)樣本,得到成分甲的平均值為4克,標(biāo)準(zhǔn)差為克,則估計(jì)這批中醫(yī)藥的藥物功效的平均值為(

A.22藥物單位B.20藥物單位C.12藥物單位D.10藥物單位

查看答案和解析>>

同步練習(xí)冊(cè)答案