17.設(shè)f(x)=x2-2ax+5(a>1)
(1)若f(x)的定義域與值域都是[1,a],求a值;
(2)在(1)的條件下,若關(guān)于x的不等式f(x)-5log2m>0在[-1,0]上恒成立,求m取值范圈.

分析 (1)首先求出函數(shù)的對(duì)稱軸方程,由此判斷函數(shù)在給定的定義域[1,a]內(nèi)是減函數(shù),再根據(jù)函數(shù)的值域也是[1,a],聯(lián)立$\left\{\begin{array}{l}{f(1)=a}\\{f(a)=1}\end{array}\right.$,可求a的值;
(2)由題意可得x2-4x+5>5log2m在[-1,0]上恒成立,運(yùn)用f(x)的單調(diào)性求得在[-1,0]上的最小值,即可得到m的范圍.

解答 解:(1)函數(shù)f(x)=x2-2ax+5(a>1)的對(duì)稱軸方程為x=a,
可得函數(shù)f(x)=x2-2ax+5在[1,a]上為減函數(shù),
又函數(shù)在[1,a]上的值域也為[1,a],
則$\left\{\begin{array}{l}{f(1)=a}\\{f(a)=1}\end{array}\right.$,即$\left\{\begin{array}{l}{1-2a+5=a}\\{{a}^{2}-2{a}^{2}+5=1}\end{array}\right.$,
解得:a=2;
(2)關(guān)于x的不等式f(x)-5log2m>0在[-1,0]上恒成立,
即為x2-4x+5>5log2m在[-1,0]上恒成立,
由f(x)在[-1,0]遞減,可得f(0)取得最小值,且為5,
可得5log2m<5,解得0<m<2.
則m的取值范圍是(0,2).

點(diǎn)評(píng) 本題考查了二次函數(shù)的單調(diào)性,考查了函數(shù)的值域的求法,考查了不等式恒成立問題的解法,解答此題的關(guān)鍵是判斷函數(shù)在給定定義域內(nèi)的單調(diào)性,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在空間直角坐標(biāo)系中,A(0,0,2),B(2,2,2),在平面xoy中找一點(diǎn)P,使得|PA|+|PB|最小,則點(diǎn)P的坐標(biāo)為(  )
A.(0,0,0)B.(2,2,0)C.(1,1,0)D.(0,1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若f(x)=$\left\{\begin{array}{l}{x+\frac{1}{x}-a.x≥\frac{1}{2}}\\{x+2-a,x<\frac{1}{2}}\end{array}\right.$的三個(gè)零點(diǎn)為x1,x2,x3,則x1x2x3的取值范圍是( 。
A.(0,+∞)B.(0,$\frac{3}{2}$)C.(0,$\frac{1}{2}$)D.($\frac{1}{2}$,$\frac{3}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知sin(π+a)=$\frac{1}{2}$,則sin(9π+a)的值為(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=x+$\frac{1}{{e}^{-x}}$,若直線:y=kx與曲線y=f(x)相切,則k=1+e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知f(x)=Acos(ωx-ωπ)(ω>0,A>0),在區(qū)間[π,$\frac{5π}{4}$]上單調(diào)遞減,則ω的最大值是( 。
A.3B.2C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)Sn是等比數(shù)列{an}的前n項(xiàng)的和,Sm-1=45,Sm=93,則Sm+1=189,則m=( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.計(jì)算:16${\;}^{\frac{3}{4}}$+($\sqrt{2}$-1)0-lg100+sinπ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.$\underset{lim}{x→4}$$\frac{{x}^{3}+x}{{x}^{4}+3{x}^{2}+1}$=$\frac{68}{305}$;$\underset{lim}{x→0}$$\frac{3-\sqrt{9-{x}^{2}}}{{x}^{2}}$=$\frac{1}{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案