12.已知函數(shù)f(x)=x+$\frac{1}{{e}^{-x}}$,若直線:y=kx與曲線y=f(x)相切,則k=1+e.

分析 求出導(dǎo)數(shù),設(shè)出切點(diǎn)(m,n),求得切線的斜率,由點(diǎn)滿足切線方程和曲線方程,解方程可得k.

解答 解:f(x)=x+$\frac{1}{{e}^{-x}}$的導(dǎo)數(shù)為f′(x)=1+ex,
設(shè)切點(diǎn)為(m,n),則切線的斜率為k=1+em
又n=km,n=m+em,
化簡(jiǎn)可得(k-1)m=k-1,
由k>1,可得m=1,
解得k=1+e,
故答案為:1+e.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率,考查導(dǎo)數(shù)的幾何意義,設(shè)出切點(diǎn)和正確求導(dǎo)是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.變量x,y滿足約束條件$\left\{\begin{array}{l}x≥0\\ x-2y≤2\\ y≤0\end{array}\right.$,當(dāng)目標(biāo)函數(shù)z=2x-y取得最大值時(shí),其最優(yōu)解為(2,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知拋物線C:y2=2px(p>0)在x=$\sqrt{3}$處的切線斜率為$\frac{1}{2}$.
(1)求拋物線C的方程;
(2)已知點(diǎn)A、B在拋物線C上且位于x軸的兩側(cè),$\overrightarrow{OA}$•$\overrightarrow{OB}$=6(其中O為坐標(biāo)原點(diǎn)),求△ABO面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.計(jì)算下列各式:
①log2$\frac{1}{8}$ ②$(\frac{16}{9})^{-\frac{3}{2}}$ ③sin600° ④cos(-1020°)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知sin30°=$\frac{1}{2}$,sinx=-$\frac{1}{2}$,求出x的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)f(x)=x2-2ax+5(a>1)
(1)若f(x)的定義域與值域都是[1,a],求a值;
(2)在(1)的條件下,若關(guān)于x的不等式f(x)-5log2m>0在[-1,0]上恒成立,求m取值范圈.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知命題p:“?x0∈{|x|-1<x<1},${x}_{0}^{2}$-x0-m=0(m∈R)”是真命題,設(shè)實(shí)數(shù)m的取值集合為M.
(1)求集合M;
(2)設(shè)關(guān)于x的不等式(x-a)(x+a-2)<0(a∈R)的解集為N,若“x∈N”是“x∈M”的必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.求與橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1有共同焦點(diǎn)且過(guò)點(diǎn)(3,$\sqrt{2}$)的雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.二次函數(shù)y=(x+2)2-1的圖象大致為( 。
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案