【題目】在直角坐標系中,將圓上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?/span>倍,再把所得曲線上每一點向下平移1個單位得到曲線.以為極點,以軸的正半軸為極軸建立極坐標系,曲線的極坐標方程是.
(1)寫出的參數(shù)方程和的直角坐標方程;
(2)設(shè)點在上,點在上,求使取最小值時點的直角坐標.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖放置的邊長為2的正三角形ABC沿x軸滾動,記滾動過程中頂點A的橫、縱坐標分別為和,且是在映射作用下的象,則下列說法中:
① 映射的值域是;
② 映射不是一個函數(shù);
③ 映射是函數(shù),且是偶函數(shù);
④ 映射是函數(shù),且單增區(qū)間為,
其中正確說法的序號是___________.
說明:“正三角形ABC沿x軸滾動”包括沿x軸正方向和沿x軸負方向滾動.沿x軸正方向滾動指的是先以頂點B為中心順時針旋轉(zhuǎn),當頂點C落在x軸上時,再以頂點C為中心順時針旋轉(zhuǎn),如此繼續(xù).類似地,正三角形ABC可以沿x軸負方向滾動.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新個稅法于2019年1月1日進行實施.為了調(diào)查國企員工對新個稅法的滿意程度,研究人員在地各個國企中隨機抽取了1000名員工進行調(diào)查,并將滿意程度以分數(shù)的形式統(tǒng)計成如下的頻率分布直方圖,其中.
(1)求的值并估計被調(diào)查的員工的滿意程度的中位數(shù);(計算結(jié)果保留兩位小數(shù))
(2)若按照分層抽樣從,中隨機抽取8人,再從這8人中隨機抽取2人,求至少有1人的分數(shù)在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,且).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在上的最大值.
【答案】(Ⅰ)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.(Ⅱ)當時, ;當時, .
【解析】【試題分析】(I)利用的二階導(dǎo)數(shù)來研究求得函數(shù)的單調(diào)區(qū)間.(II) 由(Ⅰ)得在上單調(diào)遞減,在上單調(diào)遞增,由此可知.利用導(dǎo)數(shù)和對分類討論求得函數(shù)在不同取值時的最大值.
【試題解析】
(Ⅰ),
設(shè) ,則.
∵, ,∴在上單調(diào)遞增,
從而得在上單調(diào)遞增,又∵,
∴當時, ,當時, ,
因此, 的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.
(Ⅱ)由(Ⅰ)得在上單調(diào)遞減,在上單調(diào)遞增,
由此可知.
∵, ,
∴.
設(shè),
則 .
∵當時, ,∴在上單調(diào)遞增.
又∵,∴當時, ;當時, .
①當時, ,即,這時, ;
②當時, ,即,這時, .
綜上, 在上的最大值為:當時, ;
當時, .
[點睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)求最大值. 與函數(shù)零點有關(guān)的參數(shù)范圍問題,往往利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點,并結(jié)合特殊點,從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關(guān)系,進而確定參數(shù)的取值范圍;或通過對方程等價變形轉(zhuǎn)化為兩個函數(shù)圖象的交點問題.
【題型】解答題
【結(jié)束】
22
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,圓的普通方程為. 在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為 .
(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標方程;
( Ⅱ ) 設(shè)直線 與軸和軸的交點分別為,為圓上的任意一點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,雙十一購物狂歡節(jié)(簡稱“雙11”)活動已成為中國電子商務(wù)行業(yè)年度盛事,某網(wǎng)絡(luò)商家為制定2018年“雙11”活動營銷策略,調(diào)查了2017年“雙11”活動期間每位網(wǎng)購客戶用于網(wǎng)購時間(單位:小時),發(fā)現(xiàn)近似服從正態(tài)分布.
(1)求的估計值;
(2)該商家隨機抽取參與2017年“雙11”活動的10000名網(wǎng)購客戶,這10000名客戶在2017年“雙11”活動期間,用于網(wǎng)購時間屬于區(qū)間的客戶數(shù)為.該商家計劃在2018年“雙11”活動前對這名客戶發(fā)送廣告,所發(fā)廣告的費用為每位客戶0.05元.
(i)求該商家所發(fā)廣告總費用的平均估計值;
(ii)求使取最大值時的整數(shù)的值.
附:若隨機變量服從正態(tài)分布,則,
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,為橢圓上不與左右頂點重合的任意一點,,分別為的內(nèi)心、重心,當軸時,橢圓的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記焦點在同一條軸上且離心率相同的橢圓為“相似橢圓”.已知橢圓,以橢圓的焦點為頂點作相似橢圓.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點,且與橢圓僅有一個公共點,試判斷的面積是否為定值(為坐標原點)?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com