【題目】記焦點在同一條軸上且離心率相同的橢圓為“相似橢圓”.已知橢圓,以橢圓的焦點為頂點作相似橢圓.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓交于兩點,且與橢圓僅有一個公共點,試判斷的面積是否為定值(為坐標(biāo)原點)若是,求出該定值;若不是,請說明理由.

【答案】(1);(2)6.

【解析】分析:()由相似橢圓的定義可得,橢圓的離心率,由長軸的頂點為(-2,0),(2,0),于是可得,從而可得橢圓的方程;()設(shè)直線 .

得,,利用判別式為零可得聯(lián)立,利用韋達(dá)定理、弦長公式、點到直線距離公式以及三角形面積公式可得.

詳解(Ⅰ)由條件知,橢圓的離心率,且長軸的頂點為(-2,0),(2,0),

∴橢圓的方程為.

(Ⅱ)當(dāng)直線的斜率存在時,設(shè)直線 .

得,.

得,.

聯(lián)立,化簡得.

設(shè)A(),B(),則

,而原點O到直線的距離

.

當(dāng)直線的斜率不存在時,,則,原點O到直線的距離

.

綜上所述,的面積為定值6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有下列說法:

①函數(shù)ycos(2x)的最小正周期是π

②終邊在y軸上的角的集合是{α|α,kZ}

③在同一直角坐標(biāo)系中,函數(shù)ysinx的圖象和函數(shù)yx的圖象有三個公共點;

④函數(shù)ysin(x)[0,π]上是增函數(shù).其中,正確的說法是________.(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,將圓上每一點的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>倍,再把所得曲線上每一點向下平移1個單位得到曲線.以為極點,以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是

(1)寫出的參數(shù)方程和的直角坐標(biāo)方程;

(2)設(shè)點上,點上,求使取最小值時點的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠有兩臺不同機(jī)器AB生產(chǎn)同一種產(chǎn)品各10萬件,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取二十件,進(jìn)行品質(zhì)鑒定,鑒定成績的莖葉圖如下所示:

該產(chǎn)品的質(zhì)量評價標(biāo)準(zhǔn)規(guī)定:鑒定成績達(dá)到的產(chǎn)品,質(zhì)量等級為優(yōu)秀;鑒定成績達(dá)到的產(chǎn)品,質(zhì)量等級為良好;鑒定成績達(dá)到的產(chǎn)品,質(zhì)量等級為合格將這組數(shù)據(jù)的頻率視為整批產(chǎn)品的概率

(1)從等級為優(yōu)秀的樣本中隨機(jī)抽取兩件,記為來自B機(jī)器生產(chǎn)的產(chǎn)品數(shù)量,寫出的分布列,并求的數(shù)學(xué)期望;

(2)完成下列列聯(lián)表,以產(chǎn)品等級是否達(dá)到良好以上(含良好)為判斷依據(jù),判斷能不能在誤差不超過0.05的情況下,認(rèn)為B機(jī)器生產(chǎn)的產(chǎn)品比A機(jī)器生產(chǎn)的產(chǎn)品好;

A生產(chǎn)的產(chǎn)品

B生產(chǎn)的產(chǎn)品

合計

良好以上(含良好)

合格

合計

(3)已知優(yōu)秀等級產(chǎn)品的利潤為12元/件,良好等級產(chǎn)品的利潤為10元/件,合格等級產(chǎn)品的利潤為5元/件,A機(jī)器每生產(chǎn)10萬件的成本為20萬元,B機(jī)器每生產(chǎn)10萬件的成本為30萬元;該工廠決定:按樣本數(shù)據(jù)測算,兩種機(jī)器分別生產(chǎn)10萬件產(chǎn)品,若收益之差達(dá)到5萬元以上,則淘汰收益低的機(jī)器,若收益之差不超過5萬元,則仍然保留原來的兩臺機(jī)器.你認(rèn)為該工廠會仍然保留原來的兩臺機(jī)器嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓過點,且離心率為.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點作斜率分別為的兩條直線,分別交橢圓于點,,且,求直線過定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201829-25,23屆冬奧會在韓國平昌舉行.4年后,24屆冬奧會將在中國北京和張家口舉行.為了宣傳冬奧會,某大學(xué)在平昌冬奧會開幕后的第二天,從全校學(xué)生中隨機(jī)抽取了120名學(xué)生,對是否收看平昌冬奧會開幕式情況進(jìn)行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:

(Ⅰ)根據(jù)上表說明,能否有的把握認(rèn)為收看開幕式與性別有關(guān)?

(Ⅱ)現(xiàn)從參與問卷調(diào)查且收看了開幕式的學(xué)生中,采用按性別分層抽樣的方法選取12人參加2022年北京冬奧會志愿者宣傳活動.

(ⅰ)問男、女學(xué)生各選取了多少人?

(ⅱ)若從這12人中隨機(jī)選取3人到校廣播站開展冬奧會及冰雪項目的宣傳介紹,設(shè)選取的3人中女生人數(shù)為,寫出的分布列,并求.

收看

沒收看

男生

60

20

女生

20

20

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

(1)求直線的普通方程與圓的直角坐標(biāo)方程;

(2)設(shè)動點在圓上,動線段的中點的軌跡為與直線交點為,且直角坐標(biāo)系中,點的橫坐標(biāo)大于點的橫坐標(biāo),求點的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為拋物線的焦點,過的動直線交拋物線兩點.當(dāng)直線與軸垂直時,

(1)求拋物線的方程;

(2)設(shè)直線的斜率為1且與拋物線的準(zhǔn)線相交于點,拋物線上存在點使得直線,,的斜率成等差數(shù)列,求點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù).(是常數(shù),且()

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)處取得極值時,若關(guān)于的方程上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍;

(Ⅲ)求證:當(dāng).

查看答案和解析>>

同步練習(xí)冊答案