【題目】等腰△ABC中,AB=AC=5,BC=6,將△ABC沿BC邊上的高AD折成直二面角BADC,則三棱錐BACD的外接球的表面積為( )
A. 5π B.
C. 10π D. 34π
【答案】D
【解析】依題意,在三棱錐BACD中,AD,BD,CD兩兩垂直,且AD=4,BD=CD=3,因此可將三棱錐BACD補(bǔ)形成一個(gè)長方體,該長方體的長、寬、高分別為3,3,4,且其外接球的直徑2R=,故三棱錐BACD的外接球的表面積為4πR2=34π. 選D
點(diǎn)睛:空間幾何體與球接、切問題的求解方法
(1)求解球與棱柱、棱錐的接、切問題時(shí),一般過球心及接、切點(diǎn)作截面,把空間問題轉(zhuǎn)化為平面圖形與圓的接、切問題,再利用平面幾何知識尋找?guī)缀沃性亻g的關(guān)系求解.
(2)若球面上四點(diǎn)構(gòu)成的三條線段兩兩互相垂直,且,一般把有關(guān)元素“補(bǔ)形”成為一個(gè)球內(nèi)接長方體,利用求解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,試確定實(shí)數(shù)的取值范圍;
(3)證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知不等式|y+4|-|y|≤2x+對任意實(shí)數(shù)x,y都成立,則常數(shù)a的最小值為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1:y=cosx,C2:y=sin(2x+),則下面結(jié)論正確的是( )
A. 把C1上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長度,得到曲線C2
B. 把C1上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長度,得到曲線C2
C. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長度,得到曲線C2
D. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長度,得到曲線C2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M在橢圓C上,過M作x軸的垂線,垂足為N,點(diǎn)P滿足.
(1)求點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn)在直線上,且.證明:過點(diǎn)P且垂直于OQ的直線過C的左焦點(diǎn)F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·江蘇高考)如圖,在三棱錐ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點(diǎn)E,F(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.
求證:(1)EF∥平面ABC;
(2)AD⊥AC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下面四個(gè)類比結(jié)論:
①實(shí)數(shù)a,b,若ab=0,則a=0或b=0;類比復(fù)數(shù)z1,z2,若z1z2=0,則z1=0或z2=0.
②實(shí)數(shù)a,b,若ab=0,則a=0或b=0;類比向量a,b,若a·b=0,則a=0或b=0.
③實(shí)數(shù)a,b,有a2+b2=0,則a=b=0;類比復(fù)數(shù)z1,z2,有z+z=0,則z1=z2=0.
④實(shí)數(shù)a,b,有a2+b2=0,則a=b=0;類比向量a,b,若a2+b2=0,則a=b=0.
其中類比結(jié)論正確的個(gè)數(shù)是( )
A. 0 B. 1
C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: , ,圓: 的圓心到直線的距離為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線與圓相切,且與橢圓C相交于兩點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在測試中,客觀題難度的計(jì)算公式為,其中為第題的難度, 為答對該題的人數(shù), 為參加測試的總?cè)藬?shù).現(xiàn)對某校高三年級240名學(xué)生進(jìn)行一次測試.共5道客觀題.測試前根據(jù)對學(xué)生的了解,預(yù)估了每道題的難度,如表所示:
測試后,隨機(jī)抽取了 20名學(xué)生的答題數(shù)據(jù)進(jìn)行統(tǒng)計(jì),結(jié)果如下
(1)根據(jù)題中數(shù)據(jù),估計(jì)這240名學(xué)生中第5題的實(shí)測答對人數(shù);
(2)從抽取的20名學(xué)生中再隨機(jī)抽取2名學(xué)生,記這2名學(xué)生中第5題答對的人數(shù)為,求的分布列和數(shù)學(xué)期望;
(3)定義統(tǒng)計(jì)量,其中為第題的實(shí)測難度, 為第題的預(yù)估難度.規(guī)定:若,則稱該次測試的難度預(yù)估合理,否則為不合理.試據(jù)此判斷本次測試的難度預(yù)估是否合理.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com