【題目】已知函數(shù), .
(Ⅰ)當時,求函數(shù)的極值;
(Ⅱ)當時,討論函數(shù)單調(diào)性;
(Ⅲ)是否存在實數(shù),對任意的, ,且,有恒成立?若存在,求出的取值范圍;若不存在,說明理由.
【答案】(Ⅰ); ; (Ⅱ)見解析;(Ⅲ) .
【解析】試題分析:(Ⅰ)當時, ,求函數(shù)的導(dǎo)數(shù),并且求的 值,判斷兩側(cè)的單調(diào)性,求極值;(Ⅱ)當時, ,討論兩根和 的大小關(guān)系,從而得到函數(shù)的單調(diào)區(qū)間;(Ⅲ)設(shè),將不等式整理為 ,即說明函數(shù)是單調(diào)遞增函數(shù),即恒成立,求的取值范圍.
試題解析:(Ⅰ)當時,
, .
當或時, , 單調(diào)遞增;
當時, , 單調(diào)遞減,
所以時, ;
時, .
(Ⅱ)當時, ,
①當,即時,由可得或,此時單調(diào)遞增;由可得,此時單調(diào)遞減;
②當,即時, 在上恒成立,此時單調(diào)遞增;
③當,即時,由可得或,此時單調(diào)遞增;由可得,此時單調(diào)遞減.
綜上:當時, 增區(qū)間為, ,減區(qū)間為;
當時, 增區(qū)間為,無減區(qū)間;
當時, 增區(qū)間為, ,減區(qū)間為.
(Ⅲ)假設(shè)存在實數(shù),對任意的, ,且,有恒成立,
不妨設(shè),則由恒成立可得: 恒成立,
令,則在上單調(diào)遞增,所以恒成立,
即恒成立,
∴,即恒成立,又,
∴在時恒成立,
∴,
∴當時,對任意的, ,且,有恒成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三文科500名學(xué)生參加了5月份的模擬考試,學(xué)校為了了解高三文科學(xué)生的數(shù)學(xué)、語文情況,利用隨機數(shù)表法從中抽取100名學(xué)生的成績進行統(tǒng)計分析,抽出的100名學(xué)生的數(shù)學(xué)、語文成績?nèi)缦卤恚?/span>
(1)將學(xué)生編號為:001,002,003,……,499,500.若從第5行第5列的數(shù)開始右讀,請你依次寫出最先抽出的5個人的編號(下面是摘自隨機數(shù)表的第4行至第7行)
(2)若數(shù)學(xué)的優(yōu)秀率為,求的值;
(3)在語文成績?yōu)榱己玫膶W(xué)生中,已知,求數(shù)學(xué)成績“優(yōu)”比“良”的人數(shù)少的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017屆湖南省長沙市高三上學(xué)期統(tǒng)一模擬考試文數(shù)】已知過的動圓恒與軸相切,設(shè)切點為是該圓的直徑.
(Ⅰ)求點軌跡的方程;
(Ⅱ)當不在y軸上時,設(shè)直線與曲線交于另一點,該曲線在處的切線與直線交于點.求證: 恒為直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2ax-,x∈(0,1].若f(x)在(0,1]上是增函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對一批底部周長屬于[80,130](單位:cm)的樹木進行研究,從中隨機抽出200株樹木并測出其底部周長,得到頻率分布直方圖如圖所示,由此估計,這批樹木的底部周長的眾數(shù)是cm,中位數(shù)是cm,平均數(shù)是cm.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某食品廠為了檢查甲、乙兩條自動包裝流水線的生產(chǎn)情況,隨機在這兩條流水線上各抽取40件產(chǎn)品作為樣本,并稱出它們的重量(單位:克),重量值落在內(nèi)的產(chǎn)品為合格品,否則為不合格品,統(tǒng)計結(jié)果如表:
(Ⅰ)求甲流水線樣本合格的頻率;
(Ⅱ)從乙流水線上重量值落在內(nèi)的產(chǎn)品中任取2個產(chǎn)品,求這2件產(chǎn)品中恰好只有一件合格的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中,角,,所對的邊分別是,,,且點,,動點滿足(為常數(shù)且),動點的軌跡為曲線.
(Ⅰ)試求曲線的方程;
(Ⅱ)當時,過定點的直線與曲線交于,兩點,是曲線上不同于,的動點,試求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為4m的水輪繞著圓心O逆時針做勻速圓周運動,每分鐘轉(zhuǎn)動4圈,水輪圓心O距離水面2m,如果當水輪上點P從離開水面的時刻(P0)開始計算時間.
(1)將點P距離水面的高度y(m)與時間t(s)滿足的函數(shù)關(guān)系;
(2)求點P第一次到達最高點需要的時間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點M(x,y)到直線l:x=4的距離是它到點N(1,0)的距離的2倍.
(1)求動點M的軌跡C的方程;
(2)過點P(0,3)的直線m與軌跡C交于A,B兩點,若A是PB的中點,求直線m的斜率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com