【題目】已知某離散型隨機變量X服從的分布列如圖,則隨機變量X的方差D(X)等于 .
X | 0 | 1 |
p | m | 2m |
【答案】
【解析】解:由離散型隨機變量X服從的分布列,知: m+2m=1,解得m= ,
∴E(X)= = ,
∴D(X)= +(1﹣ )2× = .
所以答案是: .
【考點精析】本題主要考查了離散型隨機變量及其分布列的相關知識點,需要掌握在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知集合A={x|2a﹣1<x<3a+1},集合B={x|﹣1<x<4}.
(1)若AB,求實數a的取值范圍;
(2)是否存在實數a,使得A=B?若存在,求出a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,PC=2,E是PB上的點.
(1)求證:平面EAC⊥平面PBC;
(2)若E是PB的中點,求二面角P﹣AC﹣E的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的奇函數f(x),當x>0時,f(x)=﹣x2+2x (Ⅰ)求函數f(x)在R上的解析式;
(Ⅱ)若函數f(x)在區(qū)間[﹣1,a﹣2]上單調遞增,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】要得到函數y=3cosx的圖象,只需將函數y=3sin(2x﹣ )的圖象上所有點的( )
A.橫坐標縮短到原來的 (縱坐標不變),所得圖象再向左平移 個單位長度
B.橫坐標縮短到原來的 (縱坐標不變),所得圖象再向右平移 個單位長度
C.橫坐標伸長到原來的2倍(縱坐標不變),所得圖象再向左平移 個單位長度
D.橫坐標伸長到原來的2倍(縱坐標不變),所得圖象再向右平移 個單位長度
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時間內每個技工加工的合格零件數的統(tǒng)計數據的莖葉圖如圖所示.已知兩組技工在單位時間內加工的合格零件平均數都為9.
(1)分別求出m,n的值;
(2)分別求出甲、乙兩組技工在單位時間內加工的合格零件的方差 和 ,并由此分析兩組技工的加工水平.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x3+3x2﹣9x+m
(1)求函數f(x)=x3+3x2﹣9x+m的單調遞增區(qū)間;
(2)若函數f(x)在區(qū)間[0,2]上的最大值12,求函數f(x)在該區(qū)間上的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,PA⊥底面ABCD,AB⊥AC,AB=1,BC=2,PA= ,E為BC的中點.
(1)證明:PE⊥ED;
(2)求二面角E﹣PD﹣A的大。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com