若二項(xiàng)展開式(2x-
1
x
n的各項(xiàng)系數(shù)的絕對(duì)值之和為729,則展開式中的常數(shù)項(xiàng)是( 。
A、60B、45C、35D、30
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:根據(jù)二項(xiàng)展開式(2x-
1
x
n的各項(xiàng)系數(shù)的絕對(duì)值和求出n的值,再求展開式中常數(shù)項(xiàng)是多少.
解答: 解:∵二項(xiàng)展開式(2x-
1
x
n的各項(xiàng)系數(shù)的絕對(duì)值之和為729,
∴3n=729,解得n=6;
(2x-
1
x
)
6
展開式中
Tr+1=
C
r
6
•(2x)6-r(-
1
x
)
r
=(-1)r•26-r
C
r
6
x6-
3
2
r
,
令6-
3
2
r=0,解得r=4;
∴常數(shù)項(xiàng)是T4+1=(-1)4•26-4
C
4
6
=60.
故選:A.
點(diǎn)評(píng):本題考查了二項(xiàng)式定理的應(yīng)用問(wèn)題,解題時(shí)應(yīng)熟記二項(xiàng)式展開式與通項(xiàng)公式是什么,屬于基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn是等比數(shù)列{an}的前n項(xiàng)和,且32a2+a7=0,則
S5
S2
=( 。
A、11B、5C、-8D、-11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等腰直角三角形ABC的直角頂點(diǎn)C和頂點(diǎn)B都在直線2x+3y-6=0上,頂點(diǎn)A的坐標(biāo)是(1,-2),求邊AB,AC所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等比數(shù)列{an}中,已知a1+a3=8,a5+a7=4,則a9+a11+a13+a15=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,PA垂直⊙O所在平面ABC,AB為⊙O的直徑,PA=AB,BD=
1
4
BP,C是
AB
的中點(diǎn).
(1)證明:BP⊥平面COD;
(2)求平面PAC與平面COD所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將一根長(zhǎng)為3米的繩子拉直后在任意位置剪斷,分為兩段,那么這兩段繩子的長(zhǎng)都不小于1米的概率是( 。
A、
1
4
B、
1
3
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(cosωx-sinωx,sinωx),
b
=(-cosωx-sinωx,2
3
cosωx),設(shè)函數(shù)f(x)=
a
b
+λ(x∈R)的圖象關(guān)于直線x=π對(duì)稱,且經(jīng)過(guò)點(diǎn)(
π
4
,0),其中ω,λ為常數(shù),ω∈(
1
2
,1).
(1)求函數(shù)f(x)的解析式;
(2)先將函數(shù)y=f(x)的圖象向右平移
π
4
個(gè)單位,然后將所得圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的5倍,縱坐標(biāo)不變,最后將所得圖象向上平移
2
個(gè)單位,得到函數(shù)y=g(x)的圖象,求g(x)在區(qū)間[
4
,
4
]
上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把下面在平面內(nèi)成立的結(jié)論:
(1)如果一條直線與兩條平行線中的一條相交,則它與另一條相交
(2)如果兩條直線同時(shí)與第三條直線平行,則這兩條直線平行
(3)如果一條直線與兩條平行線中的一條垂直,則它與另一條垂直
(4)如果兩條直線同時(shí)與第三條直線垂直,則這兩條直線平行
類比地推廣到空間,且結(jié)論也正確的是( 。
A、(1)(2)
B、(2)(3)
C、(2)(4)
D、(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

記min{a,b,c}為a,b,c中最小值,若x,y是任意正實(shí)數(shù),則M=min{x,
1
y
,y+
1
x
}的最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案