6.兩平行直線x+2y-1=0與2x+4y+3=0間的距離為(  )
A.$\frac{2}{5}\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$C.$\frac{4}{5}\sqrt{5}$D.$\sqrt{5}$

分析 在一條直線上任取一點,求出這點到另一條直線的距離即為兩平行線的距離.

解答 解:由直線x+2y-1=0取一點A,令y=0得到x=1,即A(1,0),
則兩平行直線的距離等于A到直線2x+4y+3=0的距離d=$\frac{5}{\sqrt{4+16}}$=$\frac{\sqrt{5}}{2}$.
故選B.

點評 此題是一道基礎(chǔ)題,要求學(xué)生理解兩條平行線的距離的定義.會靈活運用點到直線的距離公式化簡求值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知點P(-2,-2),Q(0,-1),取一點R(2,m),使得PR+PQ最小,那么實數(shù)m的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的短軸長是長軸長的$\frac{{\sqrt{3}}}{2}$,A是橢圓M的右頂點,B、C在橢圓M上,O是坐標(biāo)原點,四邊形OABC為面積是3的平行四邊形.
(1)求橢圓M的方程;
(2)過點(4,0)且不垂直于x軸的直線與橢圓M交于P,Q兩點,點Q關(guān)于x軸的對稱點為E,證明:直線PE與x軸的交點為橢圓M的右焦點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.計算:
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-9.6)0-(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+(1.5)-2
(2)log49×log278+2log122-log12$\frac{1}{3}$+eln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列選項中與函數(shù)y=x是同一函數(shù)的是(  )
A.$y=\root{3}{x^3}$B.$y={(\sqrt{x})^2}$C.$y=\sqrt{x^2}$D.$y=\frac{x^2}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.計算${(\frac{8}{27})^{-\;\frac{2}{3}}}+lg25+lg4+{3^{{{log}_3}2}}$=$\frac{25}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.函數(shù)f(x)=(k-2)x2+2kx-3.
(Ⅰ)當(dāng)k=4時,求f(x)在區(qū)間(-4,1)上的值域;
(Ⅱ)若函數(shù)f(x)在(0,+∞)上至少有一個零點,求實數(shù)k的取值范圍;
(Ⅲ)若f(x)在區(qū)間[1,2]上單調(diào)遞增,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知不等式f(x)=3$\sqrt{2}$sin $\frac{x}{4}$•cos $\frac{x}{4}$+$\sqrt{6}$cos2$\frac{x}{4}$-$\frac{\sqrt{6}}{2}$+m≤0,對于任意的-$\frac{5π}{6}$≤x≤$\frac{π}{6}$恒成立,則實數(shù)m的取值范圍是( 。
A.m≥$\sqrt{3}$B.m≤$\sqrt{3}$C.m≤-$\sqrt{3}$D.-$\sqrt{3}$≤m≤$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在平面直角坐標(biāo)系xOy中,已知△ABC三個頂點坐標(biāo)為A(7,8),B(10,4),C(2,-4).
(1)求BC邊上的中線所在直線的方程;
(2)求BC邊上的高所在直線的方程.

查看答案和解析>>

同步練習(xí)冊答案